
Extended Workflow Flexibility using Rule-Based
Adaptation Patterns with Eventing Semantics

Markus Döhring, Birgit Zimmermann, Eicke Godehardt

{markus.doehring, birgit.zimmermann, eicke.godehardt}@sap.com

Abstract: In several industry scenarios, it is often the case that an existing reference
workflow has to be adapted according to specific context factors, which might even
change at runtime. The adapted workflow instances virtually constitute process vari-
ants. In order to keep the efforts for systematic variant configuration and maintenance
on a manageable level, recent work has proposed the use of context-dependent adap-
tation rules. The involved rule-based change operations are however usually restricted
to simple constructs like task deletion or insertion. This can be an obstacle if eventing
paradigms for modeling reactive parts of a workflow also should be combined with
context-awareness.
In this paper, we present an example machinery maintenance service delivery use-
case and show how hierarchical context rules can be integrated to tailor the workflow
to changing data contexts. We furthermore propose to extend existing basic change
operations with an adaptation pattern catalogue that especially captures event-based
adaptation semantics for workflow languages like BPMN21 and show how a part of
our solution was prototypically implemented in jBoss Drools.

1 Introduction and Motivation

Today’s process-aware enterprise information systems are facing a tough challenge: they
are expected to provide mechanisms for the design, execution and monitoring of stan-
dardized business logic and at the same time to allow for sufficient degrees of freedom
for context-dependent resp. situation-based tailoring of IT-based procedures [vPS09]. In
many business domains it is often the case that a reference workflow (template) exists
which sometimes needs to be adapted to a variable context. The context might be com-
pletely determinable at instantiation time or even change at runtime [HBR09a]. Such
adapted workflows constitute variants, whose explicit one-by-one modeling implies the
danger of significant redundancies and becomes practically infeasible if the number of
possible variable-value combinations based on which a variant is configured is too high.

To address this issue, business rules have been proposed in several works to condition the
execution of design- or runtime change operations to workflow templates on context vari-
ables. These change operations as presented in existing work are however often restricted
to simple constructs like task deletion, insertion, movement or replacement. They lack the

1See http://www.omg.org/cgi-bin/doc?dtc/09-08-14

provision of immediate context-dependent reaction mechanisms for workflow languages
like BPMN2 that explicitly support eventing paradigms. The proper integration of work-
flow and complex event processing (CEP) paradigms, which can discover business relevant
events by filtering and correlating large noisy sets or streams of atomic events, is consid-
ered crucial for a highly responsive real-time enterprise architecture [Lun06, DKGZ10].

In this paper, we present first ideas for developing an extended adaptation pattern catalogue
for the BPMN2 language that especially allows a modeler to realize context-dependent dy-
namic runtime reactions on events from within or from outside a workflow engine. Related
work is discussed and our approach is distinguished against others in section 2. In section
3, an example BPMN workflow is introduced together with basic rule-based adaptation
mechanisms. Section 4 presents the idea of an extended event-driven adaptation catalogue
for BPMN2 as the main conceptual contribution of this work. Section 5 contains a discus-
sion of the main implications and challenges faced by our approach. A part of our solution
has been prototypically implemented in jBoss Drools, which is briefly presented in Section
6. Section 7 concludes this work.

2 Related Work

Rule-based adaptation is not the only mechanism to provide flexibility in a process-aware
information system. [PSWW05] provide a taxonomy of variability mechanisms for pro-
cess models and show how they can be expressed in UML, BPMN and Matlab/Simulink.
One prevalent alternative to rule-based adaptation is the creation of parameterizable refer-
ence workflows, that contain all possible execution possibilities. A variant is then created
by “fading out” irrelevant parts of a workflow [RV07, vdADG+08, GvJV07]. The acquisi-
tion of context variable values can be achieved by mapping them to a simple questionnaire
that can be understood by end users [LVDT08].
Instead of creating a large parameterizable workflow model, the other way round is also
possible. [LDKD09, SKY06, AHK05] present methods for merging single workflow mod-
els into a larger reference workflow.

One of the approaches for context-rule based change operations for variant creation most
related to this work is presented in [HBR10], which also specify variant points in a work-
flow together with change operations (INSERT, DELETE, MOVE, MODIFY) and provide
mechanisms e.g., to provide consistency of the adapted workflow when a context variable
changes at runtime. [KY09] show how process templates expressed in Prolog can be ma-
terialized depending on the value of predicates. The defined adaptations can concern the
control-flow as well as the data and the resource perspective of a workflow. These works
however do not especially consider event-based reaction resp. exception handling mech-
anisms as proposed by us. The work of [LSGY09] especially focuses on how constraints
can be expressed that restrict for example how an ad-hoc part of a BPMN workflow can
be adapted by a user. Rule-pattern based workflow modeling is for example discussed in
[KRSRS96, CCF+00]. A prototypical implementation using jBoss Drools that shows how
BPEL processes can be extended with rule-based self-healing functionality for exception

handling is presented in [BGP07]. The approach has similarities to ours in terms of attach-
ing compensation mechanisms to workflows via rules, however it is based on the extensive
specification of postconditions and does not focus on eventing semantics.

To the best of our knowledge, none of the discussed work fosters the introduction of a
pattern catalogue to enable context-specific event-driven adaptations to workflows. As
such, existing work especially lacks guidance how to actually combine and employ their
means of flexibility [DKGZ10], a gap which we will address in the following.

3 Context-Aware Process Adaptation

To illustrate our proposed rule-based workflow adaptation mechanisms, a fictitious but re-
alistic workflow for ship engine maintenance is presented in figure 1 in BPMN2 notation.
At first, the ship engine is set to maintenance mode. Depending on the type of the cooling
component (water or air-cooled), either a maintenance of the cooling fans and air filters
or of the cooling liquid reservoir and pump system is conducted. In parallel, if the ship
resides in a dockyard for maintenance, additional tests are conducted, which might require
an engine startup that in turn needs approval from the dockyard as due to emission restric-
tions, ships must not arbitrarily start their engines while docked. At the end of the process,
missing or damaged engine spare parts are eventually replaced if the customer is solvent.
As we will see later, it might be required that the added spare parts have to be revoked, so
a corresponding compensation handler is included in the flow.

Set System to

Maintenance

Mode

Inspect

Unit Cooling

Fans

Replace Air

Filters

Inspect Spare

Parts

Spare Parts

Missing/Damaged

AND customer

solvent
CONTEXT VARIABLES:

Time from Last Engine Repair

Current Location Country of Ship

failureHistory.contains (ZZZ)

maintenanceHistory.contains (XXX)

MaintenanceHistory.lastCheck(YYY)

Customer has existing service contract

Ship Type

Engine Designer

Current Backlog of Service Employees

Customer Relevancy Ranking

Dockyard Station

Clean

Reservoir

Inspect

Cooling

Pump

In Dockyard

Supply

Voltage

Tests

Engine

Startup Tests

postMaintenanceMode

Water

or Air Cooled Unit?

Replace/Add

SparePart

Put Back

Spare Part

Approval from

Dockyard

waterCoolingActivities
sparePartsHandling

[]

[]

]

[

[

]

measurements

Figure 1: Example Service Delivery Workflow for Engine Maintenance

The diagram in figure 1 depicts the normal progress of the workflow. It however also
contains the listing of some context variables, based on whose value the workflow may

deviate from its original modeling. To facilitate the support of consistency at design-time
and the handling of adaptations at runtime, we build upon concepts from [HBR09a] to
define regions resp. variability points in a workflow marked by circles with opening and
closing square brackets. We restrict variable regions to be block-structured, i.e. there
might only be one entering and one outgoing flow connection. However we do not re-
quire the whole workflow to be block-structured. It is also allowed to mark a single task
as variable (e.g., for direct reference for deletion or replacement) by placing a black dia-
mond on the task node. According to [HBR09a], explicitly modeling the variable points in
workflow is more robust than using absolute references, e.g. to task IDs for region adapta-
tions. In figure 1, we have four variable regions marked with a BPMN2 annotation on the
variant start node (opening square brackets). These are namely postMaintenanceMode,
sparePartsHandling, waterCoolingActivities and measurements. There are also four vari-
able tasks: cleanReservoir, inspectCoolingPump and supplyVoltageTest. If a common task
definition repository for rules and workflow modeling exists as stipulated in [DKGZ10],
we can express parametrized hierarchical adaptation rules conditioned on the context vari-
ables as shown below that apply the common change operations insert, delete, move and
replace on the workflow graph:

RULE #1: IF engineDesigner==DESIGNER1 DELETE cleanReservoir
RULE #1.1: IF maintenanceHistory.contains(frequencyConverterChanged)

INSERT checkConverter WITHIN postmaintenancemode
RULE #1.2: IF maintenanceHistory.contains(oilLeakageRepair) INSERT integrityCheck WITHIN postmaintenancemode
RULE #2: IF (shipType)==passenger ship INSERT Turn Off Security Locks WITHIN postmaintenancemode
RULE #2.1: IF (existingServiceContract) AND currentBacklog<80\%

INSERT extensiveLifetimeAnalysis WITHIN postmaintenancemode
RULE #3: IF !(existingServiceContract) DELETE ALL measurements; DELETE Replace Spare Parts
RULE #4: IF yearsFromStartup(pumpSeals)>4 OR yearsFromRepair(pumpSeals)>8

REPLACE inspectCoolingPump<>replaceCoolingPump

The concept of employing hierarchical “Ripple-Down-Rules” for introducing workflow
execution dynamics, where a descendant rule extends a parent rule, was amongst others
presented in [ATEV06]. We can see that rule #1 states that it is unnecessary to clean the
cooling liquid reservoir for a specific engine designer. For the same designer however,
additional checks need to be conducted depending on the past maintenance history (rules
#1.1 and #1.2). In rule #2.1 we can see that a context variable (the worker backlog in this
case) can possibly change at runtime. Therefore the rules that include runtime-variable
conditions in their LHS2 are evaluated right at the point where the workflow enters a
variable region that is covered by their RHS3. The adaptations applied to the variable
region or single task however remain constant for a single flow pass, i.e. they are not re-
adapted if a context-variable changes again during execution. That means if a flow passes
a variable region entry point (defined by square bracket nodes) multiple times e.g. through
a cycle, it might be the case that a variable region is executed in multiple different variants
within a single workflow instance.

2Left-Hand-Side (LHS) means the condition part of a rule.
3Right-Hand-Side (RHS) means the action part of a rule.

Table 1: Event-Driven Adaptation Pattern Catalogue Draft
ID Name Description Parameters
#1 UnfailableTimedHandler Sets a boundary error event to the concerned re-

gion that is signaled according to a specified inter-
val starting from the start of the first task within
the region. If the timer expires, the region is can-
celed and a compensation mechanism is triggered,
followed by the throwing of an escalation event.

TIME, HANDLER

#2 CompensationWithEscalation If the timer expires, the region is canceled and a
single task handler is called. If the handler suc-
ceeds, the region is re-started. If the handler fails,
the whole process fails.

REACTONEVENT, COMPENSATETASK

#3 WaitForEvent Delays the continuation within a flow until a par-
ticular event occurs. If the event does not occur
within a given period of time from the start of the
workflow instance, the instance terminates with an
error.

WAITEVENT, DURATION

#4 RestartEvent If the specified event occurs, the concerned vari-
able region or task is canceled and immediately
restarted

RESTARTEVENT

4 Extension to Event-Driven Adaptation Patterns

Up to now, we only dispose of a conceptual facility to specify what happens next (or not)
in the workflow instance. What is missing, and this point is examined in only few of
the related work (see Section 2) on dynamic rules based adaptation, is how to deal with
running task instances when sudden events occur that in turn need immediate context-
dependent reaction. These events may come from within the workflow engine constituting
modeled signal events from other workflow instances, system events like task X started or
they may come from outside the workflow engine, for instance from a CEP engine. As
an example, our maintenance workflow should immediately react on a detected customer
solvency warning event, but only if the customer is not ranked as an A-customer for the
maintenance service provider. If so, even already added or replaced spare parts should be
revoked to reduce the risk of customer illiquidity. That means, at this point we want to
combine workflow context-awareness and event-driven reactivity. The difference to spec-
ifying classic event-condition-action (ECA) rules is that we propose to use higher-level
event-driven adaptation patterns for such cases, that directly rely on BPMN2 semantics.
A corresponding draft for such a pattern catalogue is shown in table 1. Please note, that
we do not aim at re-inventing or standardizing workflow or rule semantic. Such a pattern
catalogue is rather intended to be a reference base for looking up solutions to modeling
problems of event-based adaptations within workflow, similar to what are design patterns
for software engineering or the workflow patterns [VTKB03] for workflow modeling it-
self.

Two pattern examples and their application to parts of the example workflow are shown
in figure 2, while figure 3 contains the whole adapted worflow. Pattern #2 in combination
with rule #6 realizes the already mentioned revoking of spare parts if a non-top customer
is threatened to become illiquid. Pattern #1 in combination with rule #5 guarantees that for
a particular engine designer, all measurement activities take place within a particular time
frame. Depending on the dockyard location, there may be different policies for how long
the ship may run its engine while it is docked. If this time frame is exceeded, the measure
devices need to be reset and the measurements have to be canceled and repeated.

RULE #5: IF dockyardStation==Hamburg ADD nofailabletimedhandler AROUND measurements WITH 2h HANDLER resetDevices
RULE #6: IF customerRelevancyRanking>A

ADD escalatedCompensation ON customerSolvencyWarning AROUND sparePartsReplacement

With the presented approach, we have extended the concept of rule-based variant creation
with context-dependent event-based reaction semantics. We thereby keep the LHS of rules
as well as the language constructs of their RHS on a minimum of complexity, relying on
well defined modeling change operations as well as reusable and parameterizable higher
level event-based adaptation patterns.

<<SOURCE

TASK>>

Supply

Voltage Tests

Engine

Startup Tests

2h time windows

exceeded

Reset

Devices
Supply

Voltage Tests

Engine

Startup Tests
<<HANDL

ER>>

´

<<SOURCE

TASK>>

<<TIME>>

<<TIME>>=12h

<<HANDLER>>=Reset Devices

Spare Part<<TaskToCompens

ate>>

<<ReactOnEvent>>=CustomerSolvencyWarning

<<TaskToCompensate>>=ReplaceSparePart

Replace/

Add

SparePart

Put Back

Spare Part

<<ReactOnEvent>>

Replace/

Add

SparePart

Put Back

Spare Part

Customer Solvency

Warning

Pattern #1 / Rule #5

Pattern #2 / Rule #6

Figure 2: Example Event-Driven Adaptation Patterns and Application to Workflow Regions

5 Implications and Challenges

Although the presented rule-based methods for modeling context-aware and reactive work-
flows provide a high level of flexibility, they also entail a number of general implications
and challenges one needs to be aware of. The most relevant of them are briefly discussed
in the following:

• The determination and modeling of the context itself is a research challenge for
its own. That means, it is required to develop a tough understanding of what are
the context factors that cause a process to change and which of them are suitable for
being considered in a process-aware enterprise information system, as e.g. discussed
in [PPS+09].

• The increased degrees of freedom regarding modeling decisions have to be accom-
panied by appropriate modeling guidelines. For example, one question to decide is

Set System to

Maintenance

Mode

Inspect

Unit Cooling

Fans

Replace Air

Filters

Inspect Spare

Parts
Spare Parts

Missing/Damaged

AND customer

solvent

Clean

Reservoir

Inspect

Cooling

Pump

In Dockyard

Supply

Voltage

Tests

Engine

Startup Tests

2h time

window exceeded

Reset

Devices

postMaintenanceMode

Water

or Air Cooled Unit?

Customer Solvency

Warning

Approval from

Dockyard

measurements

waterCoolingActivities
sparePartsHandling

[]

[]

]
[

[

]

Replace/

Add

SparePart

Put Back

Spare Part

Figure 3: Adapted Maintenance Workflow

which granularity should be chosen to model a basic workflow, e.g. as an intersec-
tion, a cross-section or a union of all possible instance configurations [HBR09b].
Related to this is the question of where to best model decision logic, within the
workflow or within rules [zMIK08]. [DKGZ10] point out the challenge that e.g.
a context variable change could be represented and captured as an event and vice
versa, who also has to be addressed by modeling guidance and a supporting envi-
ronment.

• The assurance of design-time and runtime consistency of the workflow becomes
significantly harder, since contradicting change operations need to be eliminated.
[HBR09b] contains an overview of relevant aspects for correctly dynamically con-
figuring variants and concrete suggestions for addressing respective issues.

• One definite strength of static workflow models which do not change at runtime is
their relatively easy monitoring, traceability and analysis. Providing such features
for rule-based adaptive processes that furthermore build on eventing semantics re-
quires far more sophisticated approaches. Potentials lie in the analysis and mining
of workflow execution logs, as e.g. implemented in ProM [VVG+09].

• A convenient modularization and structuring of the adaptation pattern catalogue it-
self is required. For example as one can see in table 1, pattern #1 is in fact a spe-
cialization of pattern #4. It would be useful to explicitly define such associations to
allow the modeler a comfortable exploration of the catalogue.

6 Prototypical Realization in jBoss Drools

A part of the presented example workflow and the concepts presented in this work has been
prototypically implemented in jBoss Drools4 [Bal09], an integrated platform for business
logic modeling and execution. Drools consists of a workflow component as well as a
RETE-based rule component together with a temporal algebra extension for CEP.

The flow component is directly capable of importing and executing a subset of XML-
serialized BPMN2. As however the required variant points for the adaptation mechanisms
specified in section 3 and 4 are not defined by BPMN2, we convert them to intermediate
throw event message nodes and catch the events within the rule engine for processing.
For a variant point attached to a single task, we create one message node before and one
message node after the corresponding task. The messages are used to signal the Drools
runtime environment when a variable part of the workflow is either entered or left. In
figure 4 in the left part, one can see a part of our example workflow with the corresponding
variant points converted to message nodes and the applied pattern #1. The context-aware
adaptation rules as presented before are converted into an ECA format as shown in the
right part of the figure. That means, if a variable part of a workflow is entered, only those
rules are triggered that have a potential impact on the respective part of the workflow by
catching the entering event of the variation point.

Figure 4: Screenshot of Example Workflow and Adaptation Rules in jBoss Drools

The remaining LHS of the rules query the (global or instance-specific) context variables
and the RHS add the corresponding change operations into a change set. An applica-

4http://www.jboss.org/drools

tion rule with a lower salience (causing a firing only after the adaptation rules have fired)
carries out the change operations in the set. Since Drools does not maintain any linkage
(flow) information between instantiated activities in the runtime, the actual workflow in-
stance adaptation is currently achieved by creating a model copy of the workflow segment
enclosed by the variant point markers (constrained to be block-structured as mentioned
before). To this model copy, the adaptations are applied. The one single node at the end of
the segment is then connected to the ending variant marker via a converging XOR gateway.
If a flow from an adapted segment reaches the ending variant point, the nodes that have
been copied only to realize the adapted segment can be traced back and removed from the
model via a cleanUp() method reacting on the event thrown by the ending variant node.
The procedure for adding and removing adapted segments is visualized in Figure 5.

As a lessons learned, we can state that the current realization in jBoss Drools bears some
intricateness which mainly results from the absence of workflow graph information on
the workflow instance level. For this reason, we will also consider other implementation
variants in the future, for example by more elegantly translating the variable parts of a
workflow which can be subject to adaptation to a set of rules which can be handled and
changed easier at runtime.

[] []

A

B

A A []A[]

A

B

A

A

X

[]

A

B

A

No variant

currently running
First Variant

Created

Second Variant

Created

Second Variant

Finished

All Variants

Finished

Figure 5: Adapted Segment Copies Added/Removed to the Model when Tokens Arrive at Variant
Start/End Nodes

7 Conclusion

This work was motivated by the requirement for modern process-aware enterprise infor-
mation systems to support context-dependent, highly variant and dynamically changing
workflows. We have introduced an example service delivery workflow for ship engine
maintenance and demonstrated how context-rules can be used to apply change opera-
tions and dynamically tailor the workflow to changing contexts. It has however also been
shown that such simple rule-based adaptations are sometimes not sufficient when eventing
paradigms are largely involved in a modeled workflow and context-dependent reactivity
and exception handling has to be realized. For this purpose, we have proposed the elab-
oration of workflow change operations with an event-driven adaptation pattern catalogue.
One such pattern for example is the context-dependent cancellation of a workflow seg-

ment if a specific event occurs and the subsequent triggering of a particular handler task.
The practical feasibility and testability of our approach has been substantiated by partly
extending an open-source rule- and workflow-engine with the presented functionality.
For future work, the proposed pattern catalogue has to be extended by analyzing typical
use-cases also other than maintenance where eventing plays a large role within a work-
flow, for example logistics. Furthermore, other implementation variants than the direct
manipulation of flow graphs, for example by mapping some workflow constructs to ECA
rules, have to be considered. Finally, an intuitive modeling environment that allows for a
comfortable browsing of patterns and their integration in rules is required. For such a mod-
eling environment, existing concepts to provide design-time validation and verification of
a model have to be examined regarding their applicability to our approach.

Acknowledgements

The work presented in this paper was developed in the context of the project Allianz Digitaler Warenfluss (ADiWa) that is funded

by the German Federal Ministry of Education and Research. Support code: 01IA08006.

References

[AHK05] Patrick Albert, Laurent Henocque, and Mathias Kleiner. Configuration based work-
flow composition. In ICWS ’05, pages 285—-292. IEEE, 2005.

[ATEV06] Michael Adams, Arthur H M Ter Hofstede, David Edmond, and Wil M P Van Der
Aalst. Worklets : A Service-Oriented Implementation of Dynamic Flexibility in
Workflows. In CoopIS ’06, pages 291–308. Springer, 2006.

[Bal09] Michal Bali. Drools JBoss Rules 5.0 Developer’s Guide. Packt Publishing, 2009.

[BGP07] L. Baresi, S. Guinea, and L. Pasquale. Self-healing BPEL processes with Dynamo
and the JBoss rule engine. In International workshop on Engineering of software
services for pervasive environments: in conjunction with the 6th ESEC/FSE joint
meeting, number 2. ACM, 2007.

[CCF+00] F. Casati, S. Castano, M. Fugini, I. Mirbel, and B. Pernici. Using patterns to design
rules in workflows. IEEE Transactions on Software Engineering, 26(8):760—-785,
2000.

[DKGZ10] M. Döhring, L. Karg, E. Godehardt, and B. Zimmermann. The Convergence of Work-
flows, Business Rules and Complex Events. In ICEIS ’10, Funchal, Portugal, 2010.

[GvJV07] F. Gottschalk, W.M.P. van Der Aalst, and M.H. Jansen-Vullers. SAP WebFlow made
configurable: Unifying workflow templates into a configurable model. In BPM, vol-
ume 4714. Springer, 2007.

[HBR09a] A. Hallerbach, T. Bauer, and M. Reichert. Configuration and management of process
variants. Handbook on Business Process Management, Springer-Verlag, 2009.

[HBR09b] Alena Hallerbach, Thomas Bauer, and Manfred Reichert. Correct Configuration of
Process Variants in Provop, UIB-2009-03, 2009.

[HBR10] Alena Hallerbach, Thomas Bauer, and Manfred Reichert. Capturing variability in
business process models: the Provop approach. Software Process: Improvement and
Practice (accepted for publication), 2010.

[KRSRS96] G Kappel, S Rausch-Schott, W Retschitzegger, and M Sakkinen. From Rules ro Rule
Patterns. In CAISE ’96, pages 99—-115. Springer, 1996.

[KY09] Akhil Kumar and Wen Yao. Process Materialization Using Templates and Rules to
Design Flexible Process Models. In RuleML ’09, pages 122–136, Las Vegas, Nevada,
2009. Springer.

[LDKD09] M. La Rosa, M. Dumas, R. Kaarik, and R. Dijkman. Merging Business Process
Models. QUT Prints, 2009.

[LSGY09] Ruopeng Lu, Shazia Sadiq, Guido Governatori, and Xiaoping Yang. Defining Adap-
tation Constraints for Business Process Variants. In BIS ’09, page 145â156. Springer,
2009.

[Lun06] A. Lundberg. Leverage Complex Event Processing to Improve Operational Perfor-
mance. Business Intelligence Journal, 11(1):55, 2006.

[LVDT08] M. La Rosa, W.M.P. Van Der Aalst, Marlon Dumas, and A.H.M. Ter Hofstede.
Questionnaire-based variability modeling for system configuration. Software and
Systems Modeling, 8(2):251—-274, 2008.

[PPS+09] K Ploesser, M Peleg, P Soffer, M Rosemann, and J.C. Recker. Learning from Context
to Improve Business Processes. BPTrends, 6(1):1—-7, 2009.

[PSWW05] F. Puhlmann, A. Schnieders, Jens Weiland, and M. Weske. Variability mechanisms
for process models, volume 17. 2005.

[RV07] M Rosemann and WMP Van Der Aalst. A configurable reference modelling lan-
guage. Information Systems, 32(1):1—-23, 2007.

[SKY06] Shuang Sun, Akhil Kumar, and John Yen. Merging workflows: A new perspective on
connecting business processes. Decision Support Systems, 42(2):844—-858, 2006.

[vdADG+08] W. van der Aalst, Marlon Dumas, Florian Gottschalk, A. ter Hofstede, M. La Rosa,
and Jan Mendling. Correctness-preserving configuration of business process models.
Fundamental Approaches to Software Engineering, 4961:46—-61, 2008.

[vPS09] W.M.P. van Der Aalst, M. Pesic, and H. Schonenberg. Declarative Workflows - Bal-
ancing between flexibility and support. Computer Science - Research and Develop-
ment, 21(2):99–113, 2009.

[VTKB03] Wil Van Der Aalst, Arthur H.M. Ter Hofstede, Bartek Kiepuszewski, and Alistair P.
Barros. Workflow Patterns. Distributed and Parallel Databases, 14(1):5—-51, 2003.

[VVG+09] W.M.P. Van Der Aalst, B.F. Van Dongen, C. Günther, A. Rozinat, H. M. W. Ver-
beek, and A. J. M. M. Weijters. ProM : The Process Mining Toolkit. In BPM ’09
(Demonstration Track). CEUR-WS.org, 2009.

[zMIK08] M. zur Muehlen, Marta Indulska, and Kai Kittel. Towards Integrated Modeling of
Business Processes and Business Rules. In 19th Australasian Conference on Infor-
mation Systems, 2008.

