
Luhmann’s slip box – what can we learn from the device for knowledge rep-
resentation in requirements engineering?

Andreas Faatz, Birgit Zimmermann, Eicke Godehardt
SAP Research, Darmstadt, Germany

{andreas.faatz, birgit.zimmermann, eicke.godehardt}@sap.com

Abstract

This paper is a thought experiment in finding struc-
tures for the elicitation of requirements on top of struc-
tures for retrieving requirements. We transfer from
structures used by the German sociologist Niklas
Luhmann, who applied a wooden slip box to collect
notes on processed literature. Each slip contains bib-
liographic information and Luhmann’s thoughts to the
referenced content. In this paper we propose to use
Luhmann’s slip box approach for requirements engi-
neering, by enhancing it to a multi user suited to sort
requirements in a requirements repository.

1. Introduction

The sociologist Niklas Luhmann collected his
thoughts of processed literature on slips, ordered in a
wooden slip box. He considered this slip box as a kind
of a communicative partner that, over time, evolves its
own knowledge. To be able to achieve a reasonable
amount of knowledge the slip box has to be fed over a
long time. Luhmann collected thousands of slips during
his whole life. In requirements analysis you often find
the problem of not knowing if you considered all re-
quirements needed to build a system. We propose to
use the idea of Luhmann’s slip box in requirements
analysis to bring up additional requirements.

The paper is organized as follows: Section two in-
troduces Luhmann’s approach. Section three presents
related work. Section four explains how the slip box
model can be used to sort requirements. Section five
concludes on the applicability of the slip box approach
to requirements engineering.

2. The slip box model

There exists one original description of the slip box
by Luhmann [1] from a communication perspective.

The structural description can be found in [2]. Here we
describe the structural elements using graph-theoretic
terms as “tree”, “leaf”, and “node”. Note that Luhmann
worked on paper, without a computer. For his realiza-
tion by a numbering scheme see [1] and [2].

The slip box consists of a tree T, where the nodes
and leaves are slips full of textual notes. The tree T is
established by the following basic operations:
• extending a leave or a node: additional text can be

attached to a slip any time.
• branching from a node or a leave (attaching slips

deeper in the hierarchy). This allows to extend the
structure of the hierarchy any time.

• referencing from any slip to any slip (the opportu-
nity to place hyperlinks).

T continuously establishes a hierarchy without
names and without formal is-a or part-of relation.
Luhmann tried to avoid any pre-supposed ontology,
world-model or domain-model to be capable of truly
restructuring sociological theories [1]. However, he
headed at a still formalized hierarchical order on top of
a full text index he maintained. The hierarchy ex-
pressed his personal associations of the slips. The
structure T resembles a wiki owned and maintained by
a single user – but without
• dedicated names for sections and wiki pages. Ac-

cess would be by tags or by full text search.
• the ability to delete text. Luhmann considered the

surprising return of forgotten slips as a source of
creativity.

The main difference of Luhmann’s slip box model
to requirements repositories is the number of accessing
users. Requirements elicitation has a multi-reader ac-
cess: many people give their requirements to the mod-
erator of a requirements process, who establishes read-
ability by a requirements tool, e.g. a wiki. There are
requirements processes with less degree of freedom,
like a moderator maintaining a legacy of reusable re-
quirements. However, the authoring and the moderating
role, which are melted in Luhmann’s system, are sepa-

mailto:eicke.godehardt}@sap.com

rated in requirements engineering. Transferring to the
organization of requirements, there are consequences
regarding the understandability of each requirement.
Where Luhmann appreciates remembering the contents
of a slip in a potentially new context by himself, re-
quirements methodology introduces approaches of re-
quirements testing to maximize a common understand-
ing in a group. We take this clarity requirement on re-
quirements processes as fulfilled.

For our purposes, the main benefit of Luhmann’s
approach is the notion of an unnamed hierarchy in T,
which organizes the slips. We consider this to be a use-
ful mechanism for the organization of requirements and
as a complement to full-text search or ontology-based
access as discussed for example in [3]. Other structured
browsing approaches as Amazon-like recommender
systems are not directly applicable to requirements.
And hyperlinks only may cause a “lost in hyperspace”
effect.

3. Related Work

Requirements processes as described by Robert-
son/Robertson [4] mention the benefits of spontane-
ously created hierarchies in mind mapping [5] as a uni-
versal tool for the requirements engineer, but do not
see this as a continuous collaborative effort of people
bringing in requirements. Nguyen and Swatman point
out the permanent potential for re-ordering require-
ments, which create “catastrophic”, i.e. disruptive re-
organization activities in the requirements process,
which are not supported by CASE tools [6]. They see
this fact as an open research question. We try to con-
struct ideas for this “formality-creativity” gap.

Laddering and card sorting as described by Maiden
and Ncube [7] have been a source of inspiration for the
mechanism presented in section four. However, we step
back from [7] abstracting from the moderating role of a
requirements engineer facilitating and documenting the
project-specific requirements hierarchies.

4. Collaborative asynchronous sorting

We turn the activity of maintenance into an asset.
The structures we are using come from Formal Concept
Analysis (FCA) [8]. FCA provides means to transform
tables of objects with binary attributes into concept
lattices. A formal concept has an extension (a set of
objects as instances of the concept) and an intension (a
set of attributes with value “true” for the concept). The
concept lattice shows the formal super-concept and
sub-concept relations. When browsing via an edge in
the formal concept lattice, one is able to see, which

objects and attributes enter or go lost for the more spe-
cial or more general concepts. We differ from other
collaborative approaches to FCA [9] by the way we
establish the attributes without any tagging or keywords
on the objects.

The core idea is, to produce binary attributes for the
single requirements, by a card sorting technique.
Whenever a new requirement Rx is entered into the
repository, a user A gets a presentation of a set Ei of
existing requirements. Each Ei has the size two or more
and belongs to an overall set E of randomly chosen
pairs or triples of requirements. We assume this to be a
pair and denote the requirements in Ei by (Ri1 and
Ri2). The attributes forming the concept lattice are of
shape “being more similar to one of the requirements
Ri1 or Ri2 in Ei”. I.e. the card sorting action lets the
user determine, which of the elements of Ei s/he con-
siders to be the most similar one to Rx. This sorting is
continuously extended for already existing require-
ments: the user is prompted to sort a second require-
ment already in the repository, for which the value of
Ei is not determined as an attribute yet.

The approach also foresees a way to drop the parti-
tions of the cards, which are too ambiguous among the
users. Along with bringing in a new requirement, the
user gets a presentation of a third requirement already
in the repository and already sorted by Ei by another
user B. I.e., the value of Ei is determined as an attribute
yet - but the sorting result of user B is hidden to user A.
If the sorting result equals among users A and B, all
attributes in E stay the same. If not, Ei will not be used
for future sorting actions and be replaced by a new Ej
containing the new requirement Rx. Thus, the user has
three sorting actions and is confronted with three re-
quirements to sort and two to “sort against” (Ei) in total
without any further necessary explanation from her/his
side.

As an example for the essentials of the process
sketched above assume the requirements repository to
collect requirements on a bottle. When a new require-
ment (Rx = “the bottle does not spill liquor, when it
falls and hits the ground”) enters the repository, the
user is for example asked, if s/he considers Rx to be
more similar to Ri1 = “the bottle is closable” or Ri2=
“the bottle has readable instructions, how to conserve
its contents over a longer period”. Let the user chose
Ri1 as more similar. Quite probably, the pair (Ri1 and
Ri2) proves distinguishable for other requirements, too,
which is checked by letting the user sort a second re-
quirement from the repository, e.g. “the bottle is trans-
parent”. The system checks, if the user agrees with the
old sorting by another user, if this is more similar or
related to readable instructions, which is probable. If

Ri1 would have been “the bottle is re-closable” and Ri2
would have been “the bottle is unbreakable”, an exist-
ing requirement like “the bottle is safe for children”
might cause different sorting by different users. Such a
combination would be dropped as attribute and re-
placed by a combination-for-comparison of “the bottle
does not spill liquor, when it falls and hits the ground”
and a random requirement. Besides that, the user is
prompted to sort something completely independent
from the pair (Ri1 and Ri2).

Considering the results for browsing the resulting
hierarchy, users get a presentation of the resulting con-
cept lattice, which is unusual as the attributes are pairs
(or n-tuples) of objects. This means, that the resulting
browsing actions offer the following steps: 1) from a
requirement to a set of requirements that are similar
and 2A) to a further abstraction of this set of require-
ments or 2B) via a specialization to 3) other similar
requirements. The trigger for step 1) is Ei, i.e. the first
browsing action will guide users to other requirements
stably similar to Ri1 or Ri2. These requirements bare
other similarities/attributes and users have the choice to
keep (2A)) or drop (2B)) Ei. This is visualized in figure
1 and table 1.

Table 1: SIMILARITY OF REQUIREMENTS

Requirement is more similar to…

1 Ri over Rj
2 Ri over Rj
3 Ri over Rj
4 Ri over Rj, Rk over Rj, Ri over Rk
5 Rj over Ri, Ri over Rk

5. Conclusion and future work

The main conclusion we draw from the sketch of the
system described here is, that the unnamed hierarchy,
which is characteristic for the slip box, can be estab-
lished by formal means and by multiple users. It can be
kept as a data structure and mechanism in parallel to

other knowledge representations to order repositories
of requirements.

We feel the urgent need to gather empirical data on
sorting, hierarchies and the stability of the distinctions
as well as on a quantitative measure like “number of
new requirements resulting from the browsing actions”.
We intend to apply the sorting method on a small set of
requirements first and measure the time needed to de-
fine a fixed number of new (“new” in the sense of new
fit criteria of the Volere shell) requirements by brows-
ing the unnamed hierarchy in n steps versus access by
full text search without creativity trigger only - and
finally both variants against a random set of require-
ments of size n as creativity trigger.

Acknowledgements

APOSDLE is partially funded under the FP6 of the
European Commission within the IST work program
2004 (FP6-IST-2004-027023).

6. References

[1] N. Luhmann: Kommunikation mit Zettelkästen, in Uni-
versität als Millieu, reprint, Haux, Bielefeld 1998

[2] M. Schiltz, F. Truyen, H. Coppens: Cutting the Trees of
Knowledge: Social Software, Information Architecture, and
Their Epistemic Consequences, Thesis 11, Vol. 89, (1), 2007

 [3] S.W. Lee, R.A. Gandhi: Ontology-based active require-
ments engineering framework, 12th Asia-Pacific Software
Engineering Conference, Teipei, Taiwan, 2005

[4] J. Robertson, S. Robertson: Mastering the Requirements
Process, Addison Weasley, 2006

[5] T. Burzan: The mind map book, Pearson Education, 2006

[6] L. Nguyen, P.A. Swatman: Managing the requirements
engineering process, Requirements Engineering, Vol. 8 (1),
Springer, 2003

[7] N.A.M. Maiden, C. Ncube: Acquiring COTS software
selection requirements, IEEE software, vol. 15(2), 1998

[8] U. Priss: Formal Concept Analysis in Information Sci-
ence, Annual Review of Information Science and Technology,
Vol. 40, No. 1. 2006

[9] A. Hotho, R. Jäschke, C. Schmitz, G. Stumme: BibSo-
nomy: A social bookmark and publication sharing system, In:
CS-TIW ’06, Aalborg, Aalborg, 2006

Figure 1. Browsing requirements.

