
The MILL – Method for Informal Learning
Logistics

Andreas Faatz, Manuel Goertz, Eicke Godehardt, and Robert Lokaiczyk

SAP Research
CEC Darmstadt

64283 Darmstadt, Germany
firstname.lastname@sap.com

Abstract. The paper presents the MILL – a system, which supports
planning of training measures. Its background technique, task-competency
modeling, is based on formal concept analysis as an indirect and quali-
tative way of determining the abilities of learners. In that context, the
fulfillment or failure of a work task is the indicator of a set of necessary
competencies. The core of the presented approach is a matrix structure
– a formal context – which has tasks as labels for its rows and compe-
tencies labeling its columns. This matrix is the basis for defining formal
concepts, which can be ordered in a lattice for navigation and systematic
decision support on training measures in an organisation.

1 Introduction

Informal learning means learning activities without a pre-defined support by
curricula, textbooks or other classical didactical material imposing a learning
path. This paper describes a method for informal learning logistics. It aims at
managing training measures in informal learning environments. This particu-
larly means learning environments that are closely embedded into the working
place and which are related to the logical and temporal order of tasks (i.e. the
workflow) a worker needs and wants to fulfill on the job. Typically, the nature
of this work is knowledge-intensive.

The informality of a training measure becomes clear by the fact, that the
effect of some or all of the training measures can often only be monitored by
the outcome of working tasks. This contrasts with the situation at school or
university, where the taught competencies to can be tested by exams. The system
described in this paper enables the detection of positive or negative expected
consequences of particular training measures in workplace-embedded learning.
Additionally, it shows how to plan individual training measures for the worker
corresponding to the tasks s/he is responsible for.

The approach to these questions is a mapping of well-ordered and well-
structured tasks to a task-competency model. This conceptual structure is queried
systematically by the system to exploit the temporal order and conditional in-
terdependency of tasks. The querying creates a feedback on potential positive or
negative consequences for the task structure and the progress of the workflow.

The achieved results allow a human resources manager to precisely determine
competencies, which should be achieved by training measures. We abbreviate the
system to be presented with the MILL – Method for Informal Learning Logistics.

The paper is organised as follows. We start with related work and identify the
basic requirements on our system. In section 3 we explain the necessary elements
of formal concept analysis and Petri nets, which will be the building blocks of the
MILL. Section 4 is dedicated to a detailed description of the system, especially
regarding the interplay between the task-competency model reflected as a formal
concept lattice and the workflow formalised as a Petri net. Section 5 will present
our conclusions and a brief outlook on future work.

2 Related Work and basic requirements

Task-competency modeling [1] is based on formal concept analysis. It is an indi-
rect and qualitative way of determining the abilities of learners. The fulfillment
of a task is the indicator of a set of necessary competencies. The core is a ma-
trix structure, the so-called formal context [2], which has tasks as labels for its
rows and competencies labeling its columns. This matrix is the basis for defining
so-called formal concepts [2], which can be ordered in a lattice for navigation.

Ley et al. show two application scenarios in the domain of informal learn-
ing [3]. First, a task included in a workflow, for example the preparation of a
document, is an indicator of the learner’s competencies. Example competencies
might be language capabilities, ability to abstract, ability to structure a topic
and particular domain knowledge. Thus, by judging about the quality of a task
output (in this example: the quality of a document) we gain a detailed picture
on the competencies which enable a person to fulfill the task. Ley argues, that
the resulting conceptual structures (intensions of the concepts are tasks, exten-
sion of the concepts are competencies) allow planning the training measures of
an organization. In a second scenario the authors establish the lattice from the
competencies and taks and present it in a graphical representation for naviga-
tion. This enables self-directed learning, where the user can easily determine,
which documents match best for his/her training needs.

Although the authors present a flexible formal basis for conceptual structures
derived from competencies and taks, the technical progress with respect to the
core ideas of formal concept analysis does not become clear – except by the
advances made by the approach of the former knowledge space theory due to
Korossy [1], which identifies sets of competencies in a non-quantitative way. The
authors do not explain systematic browsing or algorithms for browsing through
the conceptual structures or typical queries, which might support the planning
of training measures. The task-competency model is not linked to other parts of
a learning environment or workplace. The interpretation of the concept lattice
and its mapping on a temporal sequence of tasks or interdependent tasks is an
open question we solve by the techniques of the MILL.

From the point of view, which enhances Petri nets (as an example for formally
modeled workflows) by conceptual structures there is prior work in describing

the elements of Petri nets semantically [4]. Koschmieder et al. express the whole
Petri net as constructs in the web ontology language OWL [5]. Koschmieder’s
aim is a modularization and recombination of workflows expressed by Petri nets
across several business units or organizations. The semantic description is not
applied to planning of and reasoning about tasks or developing competencies by
training measures.

With the gaps of the related work in mind we state the following main re-
quirements for a system for planning training measures:

– The system should consider a learning situation outside the classroom and
thus also apply to training in organisations or during the work process. The
organisational workflow must be part of the system’s underlying model.

– The system should be able to assist planning based on the interdependencies
of tasks as well as on the interdependencies of the competencies, which are
characteristic for a task.

– The assistance provided by the system should be formalised in a way, which
helps the planner to understand the decisions or suggestions made by the sys-
tem. Especially the consequences of training measures (or the consequences
of left-out training measures) should be trackable for the user. The user
might be a planner as well as a person, who gets trained.

3 Existing background techniques

The following main sections of the paper will give a survey of the relevant back-
ground techniques, namely formal concept analysis capturing the task-competency
model and Petri nets as a universal formalism for descriptions of organisational
workflows. Moreover, we continue explaining the innovative core system (MILL)
and end with an example. Throughout our explanations, we work with the defi-
nition of a task as ’an action performed to reach a particular goal’ [6].

Notation: the paper uses the following notations for mathematical constructs:

– sets are italic capitals or denoted in the usual way with comma-separated
elements between braces: } and {.

– I is a relation between tasks and competencies (in formal concept analysis
between general objects and properties)

– small italic Latin characters denote tasks and competencies (in general for-
mal concept analysis between objects and properties)

– small Greek characters denote Petri nets
– ′ is the derivation operator for formal contexts
– formal concepts are written as pairs of sets or as bold italic capitals
– if ∗ is attached to a set notation, it denotes a subset of the set originally

notated
– a set followed by ∼ time is partially ordered regarding some time scale,

similarly ∼cost stands for partial order regarding some cost scale
– l is a list of insufficient competencies

Formal Concept Analysis (FCA) is a theory of conceptual structures (lattices),
which result from the simultaneous reasoning about objects and their properties.
FCA was founded by Wille [2]. The derivation of the concept lattice is based on
tables called formal contexts, where an entry (a cross) indicates, if a property
is fulfilled or not. We define along with Wille’s theory the notion of a Formal
Context.

Definition 1. Formal Context: let G be a set of objects and M a set of prop-
erties. Let I be a binary relation indicating, which object from G fulfills which
property from M . We write gIm, if an object g from G fulfills property m from
M . G, M and I together are called formal context (G, I,M).

Table 1 shows an example of a formal context named task-competency. Ob-
jects a1 through a6 denote tasks, where particular documents of a software engi-
neering process must be written or completed. Thus we will simply refer to these
tasks as ’documents 1 through 6’ in the following explanations. The attributes
(denoting the columns) are abbreviations for language (lan), abstraction (abs)
and Unified Modeling Language (UML). A checked box means, that for writ-
ing the document in the specific row, the marked competencies (e.g. language,
abstraction or knowing UML) have to be fulfilled. For instance, for document
1 all these competencies are necessary, but for document 3 only language and
UML are required. (The figure was generated with the online tool JaLaBA, see
http://maarten.janssenweb.net/jalaba/JaLaBA.pl). Throughout the document
we will use Arabic numbers for indexing to temporally order tasks (the task
with index number 1 denotes the first one in the workflow). Concurrent tasks
would be denoted for example as 1 (concurrency to task 1).

Table 1. Formal context

Competencies
Task lang abs UML

a1
√ √ √

a2
√ √

a3
√ √

a4
√ √ √

a5
√ √

a6
√ √

We define a derivative operator ′ for subsets X ⊆ G and Y ⊆ M mapping
the objects (properties respectively) from X (Y , respectively) to those properties
from Y (objects from X, respectively), which fulfill the relation I for at least
all objects (properties respectively) from X (Y , respectively). For the derived
sets we write X ′ and Y ′, respectively. The construction of a concept lattice is
possible by applying several derivations to sets of objects or properties. Note: X

is always a subset of X ′′ and X ′ equals X ′′′. We can define the notion of a formal
concept of a formal context (G, I,M) is a pair (A,B) where A is a subset of G
and B is a subset of M and A = B′. We say that two formal concepts (C,D) and
(E,F) fulfill the sub-concept relation ≤, if and only if C is a subset of E. Here
(C,D) ≤ (E,F) reads ”(C,D) is a sub-concept of (E,F)”. ≥ would denote the
inverse relation of ≤, and (C,D) ≥ (E,F) reads ”(C,D) is a super-concept of
(E,F)”. Table 2 shows the concepts resulting from the above task-competency
context (computed with JaLaBA). Elements of the first set in the pair forming
a formal concept are called extension of the concept, elements of the second set
are called intension of the concept.

Table 2. Formal concepts

Formal Concepts of task competency

A < a1, a4, {language, abstraction, UML} >
B < a1, a2, a4, {abstraction, UML} >
C < a1, a3, a4, a5, {language, UML} >
D < a1, a4, a6, {language, abstraction} >
E < a1, a2, a3, a4, a5, {UML} >
F < a1, a2, a4, a6, {abstraction} >
G < a1, a3, a4, a5, {language} >
H < a1, a3, a4, a5, a6, {} >

A visualization generated with ToscanaJ (see ToscanaJ project page at source-
forge.net) of the resulting lattice is shown inFigure 1.

Fig. 1. Concept lattice

Concepts are shown as colored circles, super-sub-conceptual relationships are
shown as lines. A line between a darker and a brighter concept means, that the
brighter one is a sub-concept of the darker one. The concept at the very top refers
to concept H, the concept with the label ’lang’ refers to concept G, the one with
the label ’abs’ refers concept F , the concept with the ’UML’ label refers concept
E, the concept with the label ’a6’ below it refers concept D, the concept with
the label ’a3 a5’ below it refers concept C, the concept with the label ’a2’ below
it refers concept B, the concept with the label ’a1 a4’ below it refers concept A.
The intension of a concept can be read by following all paths, where any step in
the path end in a darker concept and collecting all labels in top of a circle (i.e.
concept), the extensions can be read by following paths the other way around
and collecting all labels below a circle (i.e. concept).

A Petri net consists of tokens, transitions and places as well as arcs, which
connect places and transitions. The distribution of tokens indicates the state of
the Petri net. If a transition is enabled, all places pointing to the transition must
be filled with tokens. Tokens can be of different color. This refers to typed events.
For example, in a system different colors might refer to different users of a system
and the respective state of their workflows. Different colors of tokens might also
result from several cases or applications using the same workflow (i.e. here: Petri
net). An important characteristic of Petri nets is their openness regarding the
way transitions are fired. Tokens at incoming places only enable the transition.
There is the possibility of assigning time information to each transition. Time
information can be attached to each transition as a real number characterizing
the behavior of the transition. The number means e.g. the amount of milliseconds
the transaction will need after its enabling to produce its outgoing tokens. A
detailed introduction to Petri nets can be found in [7].

Van der Aalst [8] also showed why Petri nets are a good candidate for organ-
isational workflow modeling. First, their graphical expression has a clear formal
meaning. Moreover, a Petri net is always a state-based notation in contrast to an
event-based notation. The enabling of transitions can be seen at a glance and is
not due to any kind of (semi-formal or informal) interpretation. The state-based
notation also eases the expression of concurrency. A process leaving the system
completely can simply be expressed by removing all its (colored) tokens. Finally,
a multitude of mathematical formalisms exist that allow the checking of the
properties of a Petri net. The formalisms can directly be applied to Petri nets
expressing workflows and for proving the soundness of a workflow. For example
it can be shown, that all tasks are free from the danger of falling into a deadlock
situation.

Van der Aalst has shown that Petri nets are capable of formalizing cur-
rent process-aware information systems. Figure 2 shows an example Petri net
without tokens. The circles indicate places (for instance ’indirect users found’),
the quadratic shapes transitions (for example ’prepare developers list’). Tokens
would be indicated by colored circles centered at places. The arcs starting at
a place and ending at a transition can be understood as ’is necessary condi-
tion for’, arcs starting at a transition and ending at a place can be understood

as ’triggers state’. Note that this is rather a snapshot of a larger Petri net, as
in real-world applications the places at the very left would be connected to a
starting transition.

4 Description of the core system

Prerequisites: the MILL-system has the following prerequisites and components:

– a workflow is modeled as or transformable to a Petri net,
– for the sake of our explanation we assume a single worker in a single workflow,
– a task-competency-matrix exists, thus the conceptual structures like in Fig-

ure 1, Table 1 and Figure 2 exist,
– the tasks are the same or a super-set of the tasks corresponding to the

transitions in the Petri net.

For example, relating these prerequisites to the examples of Figure 1 and
Figure 2 would mean, that besides the modeling expressed by the two figures
concepts A through H would correspond to transitions (= tasks) from Figure 2.
Thus Figure 2 without the transition ’pool facilitating stakeholders’ and with-
out the arcs incoming in and outgoing from it would fulfill the prerequisites, if
additionally the rectangular shapes were foreseen with the elements {A, . . . H}.

If the tasks of the workflow are a proper subset, the task-competency matrix
and the resulting formal context can be restricted to those tasks, which are
actually contained in the workflow.

The operations of the MILL-system starts at the moment, when a task t
of a worker fails (case A) or is judged to be fulfilled in a non-sufficient way
(case B). This situation might occur for reasons, which originate outside of the
organization (e.g. customers refuse the outcome of a work package) or for internal
reasons (e.g. internal reviews). The workflow, i.e. the Petri net with all its tokens
at the current places is frozen before (case A) or directly after (case B) the
transition is fired. Two ratings supporting the identification of competencies to
be improved start immediately and (potentially) in parallel: a competency-based
rating and a task-based rating triggering a planning procedure. The competency-
based rating is a direct one, the task-based rating a more indirect one. Both
ratings return a set of tasks D, which we call critical tasks.

Competency-based rating: the competencies, which are necessary to fulfill the
task t, are checked against the competencies of the worker. The MILL-system
either has access to such competency ratings for each worker or prompts an
evaluator to judge about the competencies. Up to this point, competency-based
rating resembles and formalizes the ideas of [3]. From this point on, all further
steps and techniques we introduce (for competency-based rating, task-based rat-
ing and beyond) are innovative.

The insufficient competencies are returned as an ordered list l (if possible,
ordered from the worker’s worst competency to best but still insufficient com-
petency). An example for such a list could be: < language, UML >. The critical

Fig. 2. Petri Net model

tasks D are obtained as the result of browsing down the concept lattice, starting
from the most upper (more grey) concepts, which have an insufficient compe-
tency as intension. By browsing we mean moving down along the lines, which
indicate a relation ≥ or ≤ between two concepts. An example of these lines can
be found in Figure 1 between the concept with the label ’a6’ and the concept
with the label ’abs’. The browsing through the concepts starts from the top of
the concept lattice and from the worst to the best – but still insufficient – com-
petency. This action collects all tasks from the respective extensions except the
ones below concepts, where a competency (to be identified as the label heading
the circle belonging to the concept), which is either sufficient or not explicitly
on the list of insufficient competencies, can be retrieved.

Task-based rating: In this case, l does not necessarily exist. The task t is evalu-
ated without evaluating the single competencies contributing to it. The MILL-
system might have access to ratings of tasks in the past. Critical tasks are future
tasks in the workflow, which cannot be performed because of lacking competen-
cies. The task-based rating generates other critical tasks:

– promptly as the extension of the concept, which is generated by applying the
derivation operator to t twice (i.e. t′′). This means the critical tasks D are
those tasks in the future from the extension of the most special (brightest in
the grey-scaled layout of Figure 1) concept containing t. Consider from the
example in Figure 1 and Table 2, that for instance t = a1. Then the critical
tasks D would be a1 and a4.

– historically by comparing the current failure of t to failed tasks in the past.
If there was a failed task s in the past and no training measure related to the
competencies in its intension, then extension of the most general concept Q
with Q ≤ (t′′, t′) AND Q ≤ (s′′, s′). For instance, let t = a4 and s = a2 in
the example in Figure 1 and Table 2. Here, s is assumed to be in the past
as s < t. Furthermore, t′′ = a1, a4 and s′′ = a1, a2, a4. Then D = a1, a4.

– If there are more than two failed tasks from the past, the critical (future)
tasks D can be determined by repetition of this procedures.

Ordering and selecting critical tasks: the necessary training measures to im-
prove the overall performance of an organization are now prioritized by temporal
and conditional aspects, which can be derived from the workflow expressed by
the Petri net.

If the set of critical tasks D results from competency-based ranking, then
it can be ordered by assigning costs (that means: a positive real number) to
each lacking competency from the list l. The costs should increase with higher
insufficiency of the lacking competency. Summing over the costs of all compe-
tencies necessary for performing a particular critical task in D yields total costs
of missing competencies. The higher these costs, the more likely the particular
critical task will not be performed by the worker. This fact provides a basis for
deciding about training measures. For instance, if the costs reflect the training
costs, the planner might decide to chose the least expensive training measures

first. Another potential cost function is the cost of scheduling another person to
fulfill the task.

If D is the outcome of a purely task-based ranking, then there is no sim-
ilar ordering regarding costs of missing competencies, as this innovative way
of obtaining D judges taks based on competencies. Thus there might be other
competencies, which are not measurable in a single step task-based rating only.
Task-based rating rather provides immediate information on other surely critical
tasks.

In both cases an alternative ordering of D by temporal aspects is possible.
The tasks (corresponding formally to transitions) in the Petri net are partially
ordered in the sense that for some pairs of tasks (transitions) it is possible to
state, which task (transition) will be enabled executed after the other one. In
the example based on Figure 2, some of the tasks (transitions) can be ordered
temporally as follows: ’prepare users list’ comes before ’pool primary stakehold-
ers’, ’prepare administrators list’ comes before ’pool facilitating stakeholders’. In
cases of concurrency, Petri nets with time information are even able to resolve
the concurrency and order the tasks along a timeline. From this ordering point of
view, a critical future task, which approaches earlier in the workflow, could get
priority in comparison to a later critical task from the planning point of view.

In the example from Figure 2, all tasks described as ’pool ’ are concurrent
and all tasks described as ’prepare ’ are concurrent. If for example ’prepare users
list’ and ’prepare designers list’ were attached with time information, that the
firing of the transition needs 3 days for ’prepare users list’ and 1 day for ’prepare
designers list’, then the order created would place ’prepare designers list’ before
’prepare users list’.

No matter which alternative is chosen, the ordering step of the MILL-system
results in a partially ordered set D ∼time (if it is partially ordered by temporal
aspects) or D ∼cost (if it is partially ordered by costs). This set already contains
not only the critical tasks, but also a priority, either driven by the strength of the
criticality or by time issues. Before we proceed with the final selection of critical
tasks, we remark that D might also result from a mixture between or union of
task-based and competency-based rating. In this case, the partial ordering will
be created as D ∼time.

The last step in determining prioritized training measures is applying van der
Aalst’s second soundness criterion [8] to simple transformations of the workflow
captured by the Petri net. This soundness criterion investigates, if a procedure
expressed by a Petri net terminates eventually. This might be generalized to a
criterion, that the procedure terminates in time due to a real-time condition. An
example of a Petri net, which does not terminate, is depicted in Figure 3(a). This
Petri net always misses a token to proceed, whereas the Petri net in Figure 3(b)
will terminate. Nevertheless, even the Petri net from Figure 3(b) would hurt
the real-time criterion, if for instance the firing of the transition takes one day
instead of one hour, which could be an example time threshold.

Let β be a Petri net capturing the workflow. Then let β(D∗) denote a Petri
net equal to β except for the fact, that all transitions, which correspond to a

(a) Petri Net with unfired state (b) Petri Net with fired state

Fig. 3. Petri nets

subset D∗ of D, are absolutely disabled. An example of such a β(D∗) is the Petri
net resulting from adding incoming absolutely empty places to all transitions
corresponding to tasks from D. We call this example of a Petri net with disabled
transitions partially disabled. If for example β is the Petri net from Figure 2
and D∗ turns out to be the single-element set ’pool primary stakeholders’, then
β(D∗) would be Figure 2 with an additional token-less place, which has an arc to
the transition ’pool primary stakeholders’ as its only connection to the example
Petri net β.

If β(D∗) obeys the soundness or real-time criterion for all subsets D∗ of D,
then the MILL suggests to train the tasks from l, which cause the endangerment
of the earliest (or most costly) critical task from D ∼time (or D ∼cost). If l does
not exist, but still all β(D∗) obey the soundness or real-time criterion, the MILL
suggests training of competencies from the intension of the most general concept
Q which is a sub-concept to all |D| concepts generated by twofold derivation of
a single-element subset of D. If this intension is empty, the derivations and the
computing of Q are repeated on the basis of successively removing late tasks (due
to D ∼time) or expensive tasks (due to D ∼cost) from D, until Q is nonempty.
The MILL also informs the planner, that the suggested training measure is not
necessary for keeping the workflow sound.

In all other cases with non-sound β(D∗) for some D∗, the MILL passes a
warning to the planners, saying that the workflow as a whole is critical. If there
are one or several subsets D∗(1), . . . , D∗(n) of D, for which the resulting partially
disabled Petri nets do not obey the soundness or real-time criterion, then the
MILL operates through the following steps:

– determining minimal subsets of each D∗(1), . . . , D∗(n) in the sense, that
for each proper subset of each D∗(1), . . . , D∗(n) the corresponding partially
disabled Petri net would still obey the soundness criterion (real-time or van
der Aalst’s).

– determining the intension(s) of the most abstract concept(s), which contain
a single task from the respective D∗(1), . . . , D∗(n) in their extension. De-
termine the latest of these single tasks for D∗(1), . . . , D∗(n) respectively,
if there is more than one formal concept with the same most-like level of
abstraction.

– for each set D∗(1), . . . , D∗(n) the MILL proposes all the intensions of the
aforementioned most abstract concepts.

If in addition l exists, the MILL only suggests training measures correspond-
ing to those insufficient competencies. The strategy described for cases with
non-sound β(D∗) for some D∗ corresponds to the idea of reserving enough time
in the organization to train competencies, which will in their end-effect keep the
workflow possible and alive. Following this strategy, the resulting intensions are
again ordered by the MILL proceeding through the following steps:

– for each of the retrieved intensions identify the earliest task (regarding D ∼
time) in their respective extension and denote its time.

– the intension with the time closest to the current failed task is proposed by
the MILL as the training measure.

The proposition is based on this order, because it allows for step-by-step safe
traversing of competencies (contained in the intensions) to be sure to cover tasks
(contained in the extensions), which would stop the future workflow in case of
failure. To keep this safety, the MILL is applied after enabling and before firing a
transition, as long as there are current or past tasks, which failed and still could
fail due to the task-competency context and an update of the MILL-system. All
time-dependent decisions are then relative to the current task (i.e. transition).
We conclude with the description of a potential update mechanisms.

Update: For the update phase, the frozen state of the workflow is removed. That
means, that the workflow is continued: the next enabled transition(s) is (are)
fired. The update of the MILL-system can be - up to decision of the organization,
where it is implemented - foreseen with one or several paradigms:

– the MILL might work pessimistically with a virtual list l containing all com-
petencies except the ones in the derivation of successful tasks from the past.

– alternatively and potentially complementarily, whenever a competency is
taught, the MILL-system triggers a new task-competency matrix, where the
relation I between the competency just taught is removed from the task-
competency matrix or removed from the (virtual or real) list l.

– also alternatively and potentially complementarily, an update could also in-
clude outdating-functions for competencies - for instance, if no task with
an application of language competencies has to be performed after the lan-
guage competencies were trained. The outdate is implemented as insuffi-
cient competency re-appearing on l or as re-appearing relation I in the task-
competency matrix.

Finally, note that the MILL supports planning of training measures. It gives
no direct clue to alternative paths through the workflow, planning of working
tasks or workflow optimization.

5 Conclusion

We presented the MILL as a novel approach to a system, which connects the
task-competency approach to well-structured workflows, which are typical for

organizations (enterprises, administrations et cetera). The competencies are all
abilities or skills of the workers, which support tasks in the workflow and which
in a narrower sense can be taught (e.g. programming skills, language skills etc.)
or in a broader sense be developed (e.g. management skills, communication skills
etc.). Our approach matches the the three central requirements from Section 2
in the following ways:

– Classical knowledge space theory and applied competency-performance struc-
tures [1] operate in a classroom situation, thus its applications focus on
adaptive e-Learning systems [9], which try to cover a landscape of compe-
tencies while the learner interacts with these systems. The interdependencies
of tasks (in many cases the tasks are test items) is not in the focus of this
(virtual and non-virtual) classroom applications (this means: the order of
test items is irrelevant). The MILL is focused on real-world tasks in an or-
ganization and its aim is to cover the competencies necessary for concrete
future actions of the learner.

– The temporal interdependency of tasks, which are past, current or future
activities of a worker is systematically exploited by the system. Prior work
has not established or exploited any orders and relations of tasks. The MILL
distinguishes past and future tasks as well as costs of lacking competencies.

– The consequences of missing or improving competencies for future and repet-
itive tasks are formalized. This formalization is a novel mapping of task-
competency modeling to workflow analysis. Prior work has not coupled
training activities with consequences for the actual workflow. The MILL
also performs a second check after critical future tasks are identified.

– The MILL is centered around a systematic browsing of a concept lattice
resulting from the task-competency structure. Prior work [3] focuses on the
task-competency structure and resulting learning paths itself; its traversing
by (temporally and conditionally) structured tasks from a workflow was not
formalized, yet. The MILL innovates the view on the tasks and competencies
as a dyadic one: it is possible to reason from failed tasks and from lacking
competencies.

– The approach includes rich diagrammatic structures, which can be used as
an explanation of the system’s decisions. In particular, the MILL gives reason
to the priorities of training measures.

Future work will focus on the question, if an extension of the approach con-
sidering a fuzzyfication of the task-competency structure might be fruitful. The
idea behind such a fuzzyfication is capturing increasing or decreasing competen-
cies over time. This will be challenging work, as there are several approaches to
fuzzy formal concept analysis. Another useful extension would be a reasoning
mechanism, which considers the competencies of a whole team instead of single
workers.

References

1. Korossy, K.: Extending the theory of knowledge spaces: A competence-performance
approach. Zeitschrift für Psychologie (1997)

2. Wille, R., Ganter, B.: Formal concept analysis. In: Mathematical Foundations,
Springer-Verlag (1997)

3. Ley, T., Lindstaedt, S., Albert, D.: Supporting competency development in informal
workplace learning. In: Lecture Notes in Artificial Intelligence. Number 3782 (2005)

4. Koschmider, A., Oberweis, A.: Ontology based business process description. In:
Proceedings of the CAiSE05 WORKSHOPS. (June 2005)

5. W3C: Overview and features of owl (2004) www.w3.org/TR/owl-features/.
6. van Welie, M., van der Veer, G., Eliens, A.: An ontology for task world models. In:

Proceedings of DSV-IS98, Abingdon UK, Springer-Verlag (1998)
7. Sowa, J.: Knowledge representation: logical, philosophical, and computational foun-

dations. MIT Press (2000)
8. van der Aalst, W.M.P.: The application of petri nets to workflow management.

Journal of Circuits Systems and Computers 8(1) (1998)
9. Hockemeyer, C., Held, T., Albert, D.: Rath-a relational adaptive tutoring hypertext

www-environment based on knowledge space theory. In: Proceedings of CALISCE.
(1998)

