
A Framework for Cooperating Solvers –

A prototypic Implementation

Petra Hofstedt, Dirk Seifert, Eicke Godehardt
{ph,dseifert,icke}@cs.tu-berlin.de

Berlin University of Technology

Abstract. This paper describes a prototypic implementation of our
framework of cooperating constraint solvers. The system allows the in-
tegration of arbitrary constraint solvers providing typical interface func-
tions. This enables to build constraint solver cooperations according to
current requirements and, thus, comfortable modelling and solving of a
wide range of problems.

1 Introduction

The paradigm of constraint programming offers efficient mechanisms to handle
constraints of various constraint domains. However, it has been shown to be de-
sirable to combine several constraint solving techniques because this combination
makes it possible to solve problems that none of the single solvers can handle
alone.

Example 1. Let an electric circuit be given with a resistor R1 of 0.1MΩ connected
in parallel with a variable resistor R2 of between 0.1MΩ and 0.4MΩ, a capacitor
K is in series connection with the two resistors.

Also, there is a kit of electrical components in which capaci-
tors of 1µF, 2.5µF, 5µF, 10µF, 20µF , and 50µF are available.
We want to know which capacitor to use in our circuit such
that the time until the voltage of the capacitor reaches 99%
of the final voltage is between 0.5s and 1s, i.e. the duration
until the capacitor is loaded is between 0.5s and 1s.

R2

R1

K

Thus, the input constraint conjunction is R1 = 10
5 ∧ R2 = [10

5, 4 · 105] ∧
(1/R) = (1/R1) + (1/R2) ∧ VK = V× (1− exp(−t/(R× K))) ∧ VK = 0.99× V ∧
t = [0.5, 1] ∧ K ∈ {10−6, 2.5 · 10−6, 5 · 10−6, 10−5, 2 · 10−5, 5 · 10−5}.
This constraint conjunction can be solved using different cooperating con-

straint solvers. A solver for rational interval arithmetic infers from the constraint
conjunction R1 = 10

5 ∧ R2 = [10
5, 4 · 105] ∧ (1/R) = (1/R1) + (1/R2) the new con-

straint R = [5 · 104, 8 · 104]. Let us assume that, since the interval solver is able to
handle constraints of rational arithmetic, it also computes from VK = V× (1− E)
∧ VK = 0.99× V, where E = exp(−t/(R× K)), the new constraint E = 0.01. This
constraint is given to a constraint solver which is able to handle functions, like exp,
ln, sin, and cos, to infer from the constraint conjunction E = 0.01 ∧ E = exp(F),
where F = −t/(R× K), the constraint F = ln(0.01). This constraint cannot be un-
derstood by the interval solver, however, we are able to infer from F = ln(0.01)

the (slightly weaker) interval constraint F = [−4.6052,−4.6051]. Now, the in-
terval solver is able to compute the constraint 1.3571 · 10−6 ≤ K ≤ 4.3431 · 10−6

from the constraints F = [−4.6052,−4.6051], F = −t/(R× K), R = [5 · 104, 8 · 104],
and t = [0.5, 1]. The last step is done by a finite domain constraint solver
which uses the constraints K ∈ {10−6, 2.5 · 10−6, 5 · 10−6, 10−5, 2 · 10−5, 5 · 10−5}
and 1.3571 · 10−6 ≤ K ≤ 4.3431 · 10−6 to choose the capacitor which we are search-
ing for from the kit: K = 2.5 · 10−6 holds. 2

In [Hof00,Hof01] we introduced a flexible combination mechanism for con-
straint solvers of different constraint systems. In this paper, we consider a proto-
typic implementation of our overall framework for cooperating constraint solvers.
This work is organized as follows: After a short introduction into basic concepts

of constraint programming in Sect.2. we shortly recall our system for cooperating
constraint solvers in Sect.3. At this, we only touch the definition of the behaviour
of the overall system by means of a reduction relation as far as this is necessary
to understand our contributions. The introduced uniform interface for constraint
solvers is the basis of the information exchange between the cooperating solvers.
Section 4 is dedicated to the prototypic implementation of our framework of co-
operating constraint solvers. We introduce the solvers which have been chosen for
cooperation in Sect.4.1. The realization of our cooperation approach is treated in
Sect.4.2. At this, we go into detail w.r.t. the implemented control mechanism. In
Sect.4.3, we demonstrate by means of examples the possibilities of system config-
uration. We discuss the implementation w.r.t. the theoretical approach in Sect.5.

2 Constraint Programming and Constraint Solvers

A signature Σ = (S, F,R; ar) consists of a set S of sorts, a set F of function
symbols, a set R of predicate symbols, and an arity function ar : F ∪R→ S?. S,
F and R are mutually disjoint. A set of variables appropriate to Σ is a many sorted
set X =

⋃
s∈S X

s, where ∀s ∈ S the set Xs is countably infinite. A Σ-structure
D = ({Ds | s ∈ S}, {fD | f ∈ F}, {rD | r ∈ R}) consists of an S-sorted family
of nonempty carrier sets Ds, a family of functions fD, and a family of predicates
rD appropriate to F and R. Let the set of terms T (F,X) be defined as usually.
In the following, we assume familiarity with the fundamentals of predicate logic.

Definition 1 (constraint, constraint system). Let Σ = (S, F,R; ar) be a
signature, where R contains at least one predicate symbol =s

Σ for every s ∈ S.
Let X be a set of Σ-variables. Let D be a Σ-structure with equality, i.e. for every
predicate symbol =s

Σ there is a predicate =s
D⊆ D

s ×Ds, for which the usual axioms
for equality hold.

A constraint is a string r(t1, . . . , tm), where r ∈ R with ar(r) = s1 . . . sm
and ti ∈ T (F,X)

si . The set of constraints over Σ is denoted by Constraint. It
contains, furthermore, the two distinct constraints true and false with D ² true
and D 2 false. The 4-tupel ζ = (Σ,D, X, Cons), where {true, false} ⊆ Cons ⊆
Constraint, is a constraint system. 2

A solution of a disjunction of constraint conjunctions C in D is a valuation
σ : Y → D where var(C) ⊆ Y ⊆ X, such that (D, σ) ² C holds. Solving the

disjunction C means finding out whether there is a solution for C or not, i.e.
finding out whether C is satisfiable in D or not.
Given a constraint system, we need appropriate algorithms for constraint ma-

nipulation. A constraint solver CS is associated with a constraint system ζ. It is
a collection of operations on disjunctive constraints, i.e disjunctions of constraint
conjunctions, of the associated constraint system. Typically a constraint solver
consists of a combination of instantiations of the operations constraint satisfac-
tion, constraint entailment, projection and simplification.

3 Cooperating Constraint Solvers

We let constraint solvers cooperate to make it possible to solve problems which
none of the single solvers can handle alone. Figure 1 shows the architecture of our
overall system for cooperating solvers. Let L be the set of indices of constraint
systems, µ, ν ∈ L. To every individual solver CSν a constraint store C

ν is assigned.
Let DCConsν denote the set of disjunctive constraints of ζν . A constraint store
Cν ∈ DCStoreν ⊆ DCConsν is a disjunctive constraint which is satisfiable in
the corresponding structure. The meta constraint solver coordinates the work of
the different individual solvers and it manages the constraint pool. Initially, the
constraint pool contains the constraints of the constraint conjunction Φ which we
want to solve. The meta solver takes constraints from the constraint pool and

constraint constraint

meta constraint solver

solver CS1 solver
...

constraint stores

CSk

C1 Ck

constraint pool

Fig. 1. Architecture of the overall system

passes them to the constraint solvers of the corresponding constraint domains
(step 1). The individual solvers propagate the received constraints to their stores
(step 2). The meta solver forces them to extract information from their constraint
stores. This information is added by the meta solver to the constraint pool (step 3).
The procedure of steps 1-3 is repeated until the pool contains either the constraint
false or the constraint true only. If the constraint pool contains false only, then
the initially given conjunction Φ of constraints is unsatisfiable. If the pool contains
true only, then the system could not find a contradiction. Solutions of Φ can

be retrieved from the current constraint stores. Using the described mechanism,
because of information exchange between the solvers, each individual solver deals
with more information than only that of its associated constraints of Φ.

Syntax Since we want to solve mixed disjunctive constraints such that every
constraint may contain function symbols and predicate symbols of different con-
straint systems it is necessary to convert every such disjunction into a disjunction
such that every constraint is defined by function symbols and predicate symbols
of exactly one constraint system. This is done by flattening. In [Hof01] we give
a definition of the function Flatten and we show that the set of solutions w.r.t.
the common variables is preserved. Thus, after flattening we can solve the newly
built disjunction instead of the original mixed one.

Example 2. Given two constraint systems ζν = (Σν ,Dν , Xν , Consν) with
Σν = (Sν , Fν , Rν ; arν), ν ∈ {1, 2}, where =ν ∈ Rν , {−, /,×} ⊆ F1\F2 and
exp ∈ F2\F1 hold. The constraint (E =2 exp(0− t/(R× K))) is a mixed constraint
which none of the solvers CS1 and CS2 is able to handle. We may perform the
following transformation:
Flatten(E =2 exp(0− t/(R× K))) = (E =2 exp(X1)) ∧ (X1 =1 (0− t/(R× K))).
We got constraints which can be uniquely assigned to one constraint system ζ1
resp. ζ2: (X1 =1 (0− t/(R× K))) ∈ Constraint1 and (E =2 exp(X1)) ∈ Constraint2
hold. 2

3.1 A Uniform Interface for Constraint Solvers

To enable a cooperation, the solvers need to exchange information. Let to every
constraint system a constraint solver be assigned. Consider a constraint solver
CSν , ν ∈ L. Our uniform interface of CSν consists of a function tellν for constraint
propagation (according to step 2 of the above behaviour description of the system)
and a set of functions projν→µ for constraint projection (corresponding to the
above step 3).

Constraint Propagation The (partial) function tellν is due to constraint satisfac-
tion. tellν adds a constraint c ∈ Consν to a constraint store C ∈ DCStoreν if the
conjunction of c and C is satisfiable, i.e. if D ² ∃(C ∧ c) holds. Figure 2 shows our
requirements to the function tellν .

(1) The first case describes the situation, where a redundant constraint c is added
to the constraint store C. At this, C does not change.

(2) A constraint c is added to the store. Notice, that c may even be redundant
w.r.t. C. The new store C ′ comes from C by adding knowledge from c. The
disjunction C ′′ describes remaining constraints of c to be propagated later.

(3) In this situation the conjunction of c and C is unsatisfiable.

Giving requirements to the interface function tellν instead of a definition en-
ables the integration of a high number of existing solvers into our overall system.
The requirements allow to take particular properties of solvers, like their incom-
pleteness or an existing entailment test, into consideration for cost reduction for
our overall system. For a detailed description see [Hof01].

tellν : Consν ×DCStoreν −→
{truechanged, trueredundant, false} × DCStoreν ×DCConsν with

(1) if tellν(c, C) = (trueredundant, C
′, C′′),

then C ′ = C, C ′′ = true, and Dν ² ∀(C −→ c),

(2) if tellν(c, C) = (truechanged, C
′, C′′), then

(a) Dν ² ∀((C ∧ c)←→ (C ′ ∧ C′′)), (b) Dν ² ∀(c −→ C ′′),

(c) Dν ² ∀(C
′ −→ C) and (d) Dν ² ∃C

′,

(3) if tellν(c, C) = (false, C ′, C′′), then C ′ = C, C ′′ = false and Dν 2 ∃(C ∧ c).

Fig. 2. Interface function tellν (requirements)

Example 3. Let the interface function tellRlin
of a solver CSRlin

of a constraint
system ζRlin

of linear constraints over real numbers be defined as follows (an
according implementation is possible using the simplex algorithm):

tellRlin
(c, C) = (trueredundant, C, true), if D ² ∀(C −→ c),

tellRlin
(c, C) = (truechanged, C

′, true), if D ² ∀((C ∧ c)←→ C ′),
D 2 ∀(C −→ c) and D ² ∃(C ∧ c),

tellRlin
(c, C) = (false, C, false), if D 2 ∃(C ∧ c).

The following examples show the application of tellRlin
:

tellRlin
(c1, C) = (truechanged, C

′, true), where
c1 = (x ≤ 3), C = true, DRlin

² ∀(C ′ ←→ (c1 ∧ C)).
tellRlin

(c2, C
′) = (trueredundant, C

′, true), where c2 = (x ≤ 4) holds.
tellRlin

(c3, C
′) = (false, C ′, false), where c3 = (x = 4) holds. 2

Projection of Constraint Stores Constraint projection is used to enable informa-
tion exchange between the solvers. The function projν→µ (see Fig.3) projects a
constraint store Cν w.r.t. another constraint system ζµ, µ ∈ L\{ν}. It provides
knowledge which is implied by the store Cν of CSν in the form of constraints of
ζµ. The projection function projν→µ must be defined in such a way that every
solution of Cν in Dν is a solution of the projection projν→µ(Y,C

ν) in Dµ, where
Y ⊆ Xν ∩Xµ. This ensures that projecting a constraint store w.r.t. another con-
straint system, no solutions of the constraints of the store are lost. We call this
required property soundness, its formal description can be found in [Hof01].

projν→µ: P(Xν,µ)×DCStoreν → DCConsµ with
Xν,µ = Xν ∩Xµ, var(projν→µ(Y, Cν)) ⊆ Y .

Fig. 3. Interface function projν→µ (requirements)

Usually projν→µ will be defined by means of a projection function projν pro-
jecting a store Cν and yielding constraints of DCConsν and a conversion function
convν→µ: DCConsν → DCConsµ:

projν→µ(Y,C
ν) = convν→µ(projν(Y,C

ν)) with Y ⊆ Xν ∩Xµ.

Thus, each single constraint solver can be regarded as black box solver equipped
with a projection function which allows the projection of the constraint store
w.r.t. a set of variables. These black box solvers are extended by functions for
converting projections w.r.t. other constraint systems. The aim of projecting a
disjunctive constraint C ∈ DCConsν w.r.t. a sequence Ỹ (with Y ⊆ X) of variables
which occur in C is to find a disjunctive constraint C ′ which is equivalent to
∃−Ỹ C and where the variables which do occur in C but not in Ỹ are eliminated:
Dν ² ∀(∃−Ỹ C ←→ C ′). However, since sometimes it is not possible to compute
C ′ or it is not possible to compute it efficiently, we require proj to be defined as
given in Fig.4.

projν : P(X)×DCStoreν → DCConsν with
projν(Y, C) = C ′, where Dν ² ∀((∃−Ỹ C) −→ C ′) and var(C ′) ⊆ Y .

Fig. 4. Interface function projν (requirements)

Example 4. Consider the solver CSRlin
and a solver CSFD of a finite domain con-

straint system ζFD. Let C
FD = ((y =FD 3) ∧ (x >FD y) ∧ (x ∈FD {2, 3, 4, 5, 6}))

hold. The projection functions projFD and projFD→Rlin
of CSFD could work as

follows:

projFD({x}, C
FD) = (x ∈FD {4, 5, 6}) and

projFD→Rlin
({x}, CFD) = convFD→Rlin

(projFD({x}, C
FD))

= ((x ≥ 4) ∧ (x ≤ 6)). 2

In the following, we require given computable functions tellν and projν→µ,
ν, µ ∈ L.

3.2 Description of the System Behaviour

The behaviour of our system is described by means of reduction relations for
overall configurations. An overall configuration H consists of a formal disjunc-
tion

∨̇
i∈{1,...,m}Gi of configurations Gi. Formal disjunction ∨̇ is commutative and

associative. A configuration G = (P ¯
∧

ν∈L C
ν) corresponds to the architecture

of the overall system (Fig.1). It consists of the constraint pool P which is a set
of constraints which we want to solve and the conjunction

∧
ν∈L C

ν of constraint
stores. In [Hof00] we show elaborately how to define strategies for cooperating con-
straint solvers, i.e. reduction systems for overall configurations using the interface
functions of the solvers. In the following, we shortly show the general procedure.

In general, in one derivation step one or more configurations Gi, i ∈ {1, . . . ,m},
are rewritten by a formal disjunction HGi of configurations:

OConf1 = H1 ∨̇ G1 ∨̇ . . . ∨̇ Hi ∨̇ Gi ∨̇ . . . ∨̇ Hm ∨̇ Gm ∨̇ Hm+1 =⇒
OConf2 = H1 ∨̇ HG1 ∨̇ . . . ∨̇ Hi ∨̇ HGi ∨̇ . . . ∨̇ Hm ∨̇ HGm ∨̇ Hm+1

Thus, first, we define a derivation relation for configurations and, based on this,
we define a derivation relation for overall configurations.

Step 1. Definition of a derivation relation for configurations (production level).
The simplest possibility to define a derivation step Gi → HGi is to take exactly
one constraint c ∈ Consν , ν ∈ L, from the constraint pool of Gi and to propagate
it to its associated store Cν (using tellν). This is followed by projections of the
newly built store C ′

ν
w.r.t. other constraint systems building the new overall

configuration HGi (using projν→µ). It is possible to define many other strategies
for the production level in this way, like for example parallel work or fixed orders
for the solvers to work or for constraints to be propagated next.

Step 2. Defining a derivation relation for overall configurations (application
level). A derivation step OConf1 =⇒ OConf2 for overall configurations is defined
on the basis of the derivation relation for configurations (at production level).
There are as well many possibilities: for example, we may define a derivation step
such that the derivation of exactly one configuration or the parallel derivation of
several configurations is allowed.
Using this two-step frame different reduction systems which realize differ-

ent cooperation strategies for the solvers have been described (see [Hof00]).
The reduction systems allow the derivation of an initial overall configuration
G0 = PΦ ¯

∧
ν∈L C

ν
0 , where the constraint pool PΦ contains the constraints of

the conjunction Φ which we want to solve and all constraint stores Cν
0 , ν ∈ L,

contain the constraint true only. From the derived normal form we obtain infor-
mation about the satisfiability of the initially given disjunctive constraint.
In [Hof01] we formally proved termination and confluence, soundness and com-

pleteness of the defined reduction systems which describe the behaviour of the
system. We analysed the computation results using our overall system of coop-
erating solvers and showed that the information exchange between the solvers
enables our overall system to solve disjunctions of constraint conjunctions which
the single solvers are not able to handle. We used our combination mechanism for
the definition of different cooperation strategies (see also [Hof00]) and we showed
the transfer of the theoretical results w.r.t. solutions, termination, and confluency
to the newly defined strategies.

4 Implementation

In this section we introduce a prototypic implementation of our framework of
cooperating constraint solvers. We introduce the solvers which have been chosen
for cooperation in Sect.4.1, describe the realization of our cooperation approach
in Sect.4.2, and demonstrate the possibilities of system configuration by means of
examples in Sect.4.3.

4.1 Integrated Solvers

Typical applications of cooperating solvers are arithmetic problems. Thus, the
constraint systems and the associated solvers to be integrated have been chosen
accordingly. Three freely available constraints solvers have been chosen for coop-
eration: a constraint solver for linear constraints over rational numbers, a finite
domain constraint solver, and an interval constraint solver.

The Solver for Linear Arithmetic The constraint solver LinAr for linear con-
straints over rational numbers has been developed by Olaf Krzikalla as a study
work in [Krzan]. LinAr is based on the simplex algorithm and it has been imple-
mented in the language C. This solver is able to handle linear equations, inequal-
ities, and disequations over rational numbers. It handles nonlinear constraints by
a delay mechanism. The constraint system of LinAr is defined as follows:

ζLinAr = (ΣLinAr,DLinAr, XLinAr, ConsLinAr), where

ΣLinAr consists of the constants (i.e. 0-ary function symbols) 0, 1, 2, 3, . . ., the
binary function symbols +, −, and × and the binary predicate symbols =, 6=, <,
≤, >, and ≥:

ΣLinAr = (SLinAr, FLinAr, RLinAr; arLinAr)
= ({rat}, {0, 1, 2, 3, . . . ,+,−,×}, {=, 6=, <,≤, >,≥}; arLinAr).

DLinAr is defined as expected.

The interface function tellLinAr is defined according to tellRlin
of Example 3.

The function projLinAr projects r-relations, with r ∈ {=, <,≤, >,≥}, between
variables and terms.

The Finite Domain Constraint Solver On the base of a free library [CSP01] of
routines for solving binary constraint satisfaction problems from Peter van Beek
our finite domain constraint solver CSPlib has been implemented. While the
routines library has been implemented in C, our solver CSPlib has been imple-
mented in Java. The constraint system of CSPlib is the following:

ζCSPlib = (ΣCSPlib,DCSPlib, XCSPlib, ConsCSPlib), where

ΣCSPlib consists of a set Constants of constants (i.e. 0-ary function symbols) and
the binary predicate symbols =, 6=, <, ≤, >, ≥, and in.

ΣCSPlib= (SCSPlib, FCSPlib, RCSPlib; arCSPlib)
= ({const,Pconst}, Constants, {=, 6=, <,≤, >,≥, in}; arCSPlib),

where arCSPlib(=) = arCSPlib(6=) = . . . = arCSPlib(≥) = const const,
arCSPlib(in) = const Pconst.

The set Constants of constants is not preliminarily fixed. Giving a conjunction
C of constraints to be solved, for every variable x ∈ var(C) a constraint of the
form x in {. . .} must be given which restricts the set of values for x to a finite set.
From these constraints the set Constants of constants is derived. For example, if
the constraints contain numbers, then Constants contains the rational numbers
(with the usual order) and all possible sets of rational numbers, i.e. it contains
Q and P(Q). Thus, a constant v ∈ Constants is either a simple value, like a
number or a string, arCSPlib(v) = const holds in this case, or it is a set of simple
values, arCSPlib(v) = Pconst holds. DCSPlib is defined accordingly. ConsCSPlib =
ConstraintCSPlib holds.
The interface function tellCSPlib of the constraint solver CSPlib has been

defined in such a way that the propagated constraint is added to the constraint
store and afterwards node-consistency checking and arc-consistency checking is
performed. Checking satisfiability is delayed until a projection occurs. Obviously,

CSPlib is incomplete. Because of the delay of satisfiability checking, the con-
straint store of CSPlib may even become unsatisfiable. At first sight, this seems
to be a hard variation to the tell-definition in Sect.3. However, since in our frame-
work every (successful) propagation enforces a projection later on, the inconsis-
tency is detected at the latest at the time of projecting the store. Thus, this
variation produces no real problems or inconsistencies using the system w.r.t. the
theoretical results or the desired behaviour of the system.
The projection function projCSPlib projects in-relations between variables and

sets of values. On top of projCSPlib two further projection functions have been
implemented: The projection function weakProjCSPlib converts the original in-
relations between a variable x and a set of values into a conjunction a ≤ x∧x ≤ b,
where a is the smallest value in the set (w.r.t. the corresponding order) and b is
the biggest value in the set. Here, we talk about a ‘weak’ projection because in
the interval expressed by the resulting constraint conjunctions there may appear
values which are not contained in the original set. Weak projection creates a
conjunction of constraints. The projection function strongProjCSPlib converts
the constraint x in {v1, . . . , vn} into a disjunction x = v1 ∨ . . . ∨ x = vn of
equality constraints. Strong projection creates a disjunction of constraints, where,
in contrast to weak projection, the projected constraints express exactly the set
of values of the original in-constraint.

The Interval Constraint Solver The third solver chosen for integration into the
system of cooperating constraint solvers is a solver IA which is due to a solver
[Bra01] for interval arithmetic from Timothy J. Hickey from Brandeis University.
The solver is implemented in Java. The constraint system of IA is the following:

ζIA = (ΣIA,DIA, XIA, ConsIA), where

ΣIA= (SIA, FIA, RIA; arIA)
= ({real},{0, 1, 2, 3, . . . ,+,−,×, /, ,̂ exp, log, sin, cos, . . .},
{=, 6=, <,≤, >,≥, in[,], . . .}; arIA).

DIA = ({R}, {0
R, 1R, 2R, 3R, . . . ,+R,−R,×R, /R,ˆR, expR, logR, sinR, cosR, . . .},

{=R, <R,≤R, >R,≥R, inR}), where

the functions and relations are defined as expected.

For inR holds: inR ⊆ R× R× R with ∀x, y, z ∈ R: x ∈ inR(y, z) iff y ≤ x ≤ z.

ConsIA = ConstraintIA holds.

The solver IA is an incomplete solver. The implementation of the interface
functions on top of existing functions of the solvers was simple. The implemented
interface matches the theoretical requirements of Sect.3.1. The projection function
projIA projects constraint conjunctions of the form a ≤ x ∧ x ≤ b, where x is a
variable and a and b are values. Such a projected constraint conjunction describes
an interval of admissible values of the corresponding variable.

4.2 Cooperation

The overall system of cooperating solvers consists, according to the overall archi-
tecture given in Fig.1, of a constraint pool, a meta constraint solver, i.e. the control

mechanism, and the individual constraint solvers. In contrast to the theoretical
description which allows the handling of disjunctive constraints the implemented
system may only handle an initially given constraint conjunction. If during the
computation a disjunction of constraints is projected, which causes in theory the
splitting of a configuration into an overall configuration, this is realized via cre-
ating choice points, saving the current computation state, and a following depth
first search.

The meta constraint solver is the mechanism which realizes the cooperation
strategy. This cooperation mechanism has been implemented in Java. In our
implementation, because of time limitations, it has been decided in favour of one
relatively fixed cooperation strategy with the possibility of some variation for
experiments. An extension of the system with the possibility of a more flexible
handling of strategies is a subject of current work. Figure 5 shows a flowchart of
the implemented cooperation strategy.

no

truechanged?

delete current configuration

yes

no

no

yes

no

weak proj

truechanged?

false?

c1 ∧ . . . ∧ cn

false?

parallel tell

strong proj

parallel tell

yes

no contradiction found

Fig. 5. The fixed cooperation strategy

The chosen strategy corresponds to the strategy defined by the reduction re-
lation =⇒par in [Hof00]. Using this parallel derivation strategy, in one derivation
step, first, as many constraints of the constraint pool of one configuration as pos-

sible are propagated, afterwards a projection of the respective constraint stores
follows.

Consider Fig.5. Given a conjunction C = c1∧. . .∧cn of constraints to be solved,
first, a ‘parallel tell’ of all constraints of the pool occurs. If all propagations have
been successful and at least one result has been truechanged, then a projection of all
concerned constraint stores follows, where CSPlib performs a weak projection.
If at least one propagation has failed, then the computation (for the current
configuration) is aborted. It may happen that there are further configurations to
regard for which we start in this case with a parallel tell of the constraints of
the pool. If for every configuration, a propagation has failed, then we found out,
that the initially given constraint conjunction is unsatisfiable. This procedure
is repeated until no more changes of the stores occur, i.e. until no successful
propagation has had result truechanged. The upper part of the chart up to the
dashed line illustrates this order of events.

The lower part of the chart describes a similar procedure. However, instead
of the weak projection which only produces constraint conjunctions, a strong
projection is performed here, which is allowed to produce a disjunctive constraint.

The projection of a disjunction causes the splitting of a configuration into an
overall configuration in theory and this is realized, as already stated, via creating
choice points, saving the current computation state, and a following depth first
search. That is, we continue working on one configuration.

As before, the constraints of the constraint pool, among them the newly pro-
jected ones, are propagated using the interface functions tellν , ν ∈ L, of the
solvers. As in the upper loop, we distinguish three cases:

If no propagation of the newly projected constraints has failed and no suc-
cessful propagation has supplied result truechanged, then the computation stops.
The system is not able to find a contradiction in the initially given constraint
conjunction.

If at least one propagation of the newly projected constraints has failed, then
the computation for the current configuration is aborted. If there are further
configurations to look at, then we start for one of them with a parallel tell. If for
every configuration, a propagation has failed, then we found out, that the initially
given constraint conjunction is unsatisfiable.

If no propagation has failed and there have been successful propagations with
result truechanged, then the system once again enters the upper loop and continues
by weak projections.

As already mentioned, there is the possibility of some variation of the strategy
for experiments. This concerns the order of propagation of constraints from the
pool. In this way, it is possible to prefer constraints of the form x = v for propaga-
tion, where x is a variable and v is a value which express variable bindings. This
is based on the idea that the propagation of bindings may, in general, restrict the
set of solutions more than other constraints do, and that their propagation may
be of lower cost than that of other constraints. As well, it is possible to fix the
order of constraint systems propagating their constraints next.

4.3 System Configuration – Examples

The implemented overall system can be configured by the user. This concerns
the constraint solvers to be integrated as well as strategy aspects and further
parameters to support the evaluation of experiments.
These configuration items are given together with the conjunction of con-

straints to be solved in a file. This file consists, in general, of four parts:

– an (optional) [global] part which contains the predefinition of strategy pa-
rameters, and parameters to support the evaluation of experiments.

– a part [solver], where the constraint solvers to be integrated are specified.
– an (optional) [configuration] part for configuring the signature of the solvers.
– a part [constraints] which contains the constraints to be solved.

Now, for illustration we will have a look at two example files. For a detailed
description see [GS01]. Consider first the input file in Fig.6 which corresponds to
Example 1.

[global]

verbose = 1

outvars = {K}
interactive = no

[solver]

CS1 = solver.brandeis.Brandeis with config1

CS2 = solver.brandeis.Brandeis with config2

CS3 = solver.csplib.CSPlib with config3

[config1]

functions = {+,-,*,/,^}
relations = {=,<=,>=,>,<,in}

[config2]

functions = {exp}
relations = {=,<=,>=,>,<}

[config3]

relations = {=,inn -> in}

[constraints]

R1 = 100000;

R2 in [100000, 4.0E5];

(1 / R) = (1 / R1) + (1 / R2);

VK = V * (1 - exp(- (t) / (R * K)));

VK = 0.99 * V;

t in [0.5, 1.0];

K inn {1.0E-6, 2.5E-6, 5.0E-6, 1.0E-5, 2.0E-5, 5.0E-5};

Fig. 6. Input file: The electric circuit

In the part [global], the determination verbose = 1 fixes the verbose level
which is used to control the amount of output during the computation. The set
of variables w.r.t. which a projection of all constraint stores is shown to the user
when the system has computed a normal form, is fixed by the set outvars. In our

case, we are interested in the value of the capacitor K. The parameter interactive
controls the continuation of the computation after having computed the first set of
solutions, i.e. the normal form of the first configuration in the tree of configurations
created during the computation. The computation stops waiting for the decision of
the user whether a continuation is wished if interactive = yes holds, otherwise
(interactive = no), the computation continues without interrupt.

In the second part, the [solver] part, it is stated that we will use the interval
solver CS1, the finite domain constraint solver CS3, and a solver CS2 which reasons
over specific functions, like exp, which is simulated by the interval solver with
restricted signature. The solvers have been introduced in Sect.4.1. The signature
of the finite domain constraint solver is restricted according to the configuration
[config3]. This configuration fixes the set of predicate symbols of the solver to
contain besides = only inn, which is mapped to the predicate symbol in. This has
been necessary because the signature of the interval solver contains the symbol
in as well, but with a different interpretation of the predicate.

The forth part [constraints] of the file gives the constraints to be
solved according to Example 1. The first three constraints, the fifth and the
sixth constraints are constraints of CS1, the interval solver. The constraint
VK = V * (1 - exp(- (t) / (R * K))) is mixed over the symbols of the solvers
CS1 and CS2 and it must be transformed by the system according to Example 2
into a conjunction of pure constraints. The last constraint can be assigned to the
finite domain solver CS3. Obviously, to narrow the solution space of the entire
constraint conjunction we need the cooperation of CS1, CS2, and CS3 here, none
of the single solvers is able to handle all given constraints.

Consider as a second example the well known cryptoarithmetic problem of
SEND-MORE-MONEY. It is given by the arithmetic equation on the left hand
side of Fig.7. It is asked for solutions such that each letter represents a different
digit and the given equation holds. On the right hand side of Fig.7 we have given
the only solution for which M = 1 holds. An input file for this problem is given in
Fig.8. Besides the already considered parameters, in the [global] part of this file

The problem: S E N D
+ M O R E

M O N E Y

A solution: 9 5 6 7
+ 1 0 8 5

1 0 6 5 2

Fig. 7. The SEND-MORE-MONEY problem

the parameter pool is determined. It is fixed by meta.pool.SolverSorted which
schedules the order of constraint solvers whose constraints are to be propagated
next as given in the second part [solver], i.e. the finite domain constraint solver
has the highest priority.

We use in the cooperation a further constraint solver AllDiff. This solver is
able to handle the predicate symbol alldiff. Having received the constraint
alldiff(S, E, N, D, M, O, R, Y), it projects the conjunction S6=E ∧ S6=N
∧ . . .∧ O6=Y ∧ R6=Y of disequations between every two argument variables. The
implementation of this solver is a realization of a general method to extend black

[global]

verbose = 1

interactive = yes

outvars = {S, E, N, D, M, O, R, Y}
pool = meta.pool.SolverSorted

[solver]

CSPlib = solver.csplib.CSPlib

LinAr = solver.linar.LinAr

AllDiff = solver.allDiff.AllDiff

[constraints]

alldiff(S, E, N, D, M, O, R, Y);

S, E, N, D, M, O, R, Y, U1, U2, U3 in {0 .. 9};
D + E = Y + (U1 * 10);

U1 + N + R = E + (U2 * 10);

U2 + E + O = N + (U3 * 10);

U3 + S + M = O + (M * 10);

Fig. 8. Input file: SEND-MORE-MONEY

box constraint solvers by new predicates without changing the solver directly and
after their integration into the combined architecture. The method is more elabo-
rately described in [Hof01]. The extension of a solver, in this case CSPlib as well
as LinAr, with a new predicate is done by integrating a new solver which simply
represents a translation mechanism into the overall system.
The signatures of the incorporated solvers are not restricted. The forth part

of the file gives one possible representation of the problem by constraints. The
constraint alldiff(S, E, N, D, M, O, R, Y) can be assigned to the solver
AllDiff, the second constraint is a finite domain constraint, i.e. a CSPlib con-
straint. All other constraints are linear constraints over rational numbers and can
thus be handled by LinAr. As in the previous example, to narrow the solution
space of the entire constraint conjunction we need the cooperation of all three
solvers.

In the above two examples, we have shown some possibilities of system con-
figuration according to the current requirements. There are further predefined
configuration items. The system is allowed to be reconfigured by changing the
configuration items in the input file without a following recompilation. It allows
to integrate further constraint solvers with a suitable interface definition and to
extend the configuration items in a simple way.

5 Conclusion

This paper describes a prototypic implementation of a system of cooperating
constraint solvers. After a short reintroduction of the theoretical description of
the system of [Hof00,Hof01] in Sect.3, we described its prototypic implementation
in Sect.4.
Three freely available constraint solvers which have been chosen for their inte-

gration into the overall system are shortly introduced followed by a description of

the implemented control mechanism and examples of input files. The prototypic
implemented overall system can be configured by the user w.r.t. the constraint
solvers to be integrated, strategy parameters, and further parameters for support
of experiments. The predefined set of configuration items can be extended by the
user. The implementation allows to integrate further solvers with a suitable inter-
face definition. The configuration of the system as shown in Sect.4.3 by examples
is easy and comfortable. The system has been tested with examples (for diagnosis
of electric circuits) up to a magnitude of 100 variables and constraints, which can
be handled in an adequate time of some seconds. The system is freely available.
The implementation is due to a diploma thesis [GS01]. There have been strict

time limitations and, thus, the current system is very preliminary and error prone
and should be considered with much care. Its main purpose was to prove the
practicability of the theoretical approach. However, a reimplementation is ongo-
ing. At this, we will take the possibility of a more flexible handling of strategies
into consideration. An evaluation of experiments and a more detailed theoretical
treatment of the subject of strategies is, as well, a topic of current research.
The prototypic implementation has confirmed the theoretical design of the

overall system. The architecture of the overall system as well as the theoretical
description of the uniform interface for constraint solvers have been shown to be
expedient for an actual implementation.

References

[Bra01] The Brandeis Interval Arithmetic Constraint Solver, January 2001. Available
from http://www.cs.brandeis.edu/~tim/.

[CSP01] A ’C’ Library of Routines for Solving Binary Constraint Satisfaction Problems,
January 2001. Available from
http://www.ai.uwaterloo.ca/~vanbeek/software/csplib.tar.gz.

[GS01] E. Godehardt and D. Seifert. Kooperation und Koordination von Con-
straint Solvern – Implementierung eines Prototyps. Master’s thesis,
University of Technology Berlin, 2001. (in German), Available from
http://uebb.cs.tu-berlin.de/~ph/DA.SeifertGodehardt/.

[Hof00] P. Hofstedt. Better Communication for Tighter Cooperation. In J. Lloyd, editor,
First International Conference on Computational Logic – CL’00, volume 1861
of LNCS. Springer-Verlag, 2000.

[Hof01] P. Hofstedt. Cooperation and Coordination of Constraint Solvers. PhD thesis,
Dresden University of Technology, 2001.

[Hon94] H. Hong. Confluency of Cooperative Constraint Solvers. Technical Report
94-08, Research Institute for Symbolic Computation, Linz, Austria, 1994.

[Krzan] O. Krzikalla. Constraint Solver für lineare Constraints über reellen Zahlen.
Großer Beleg. Technische Universität Dresden, 1997. (in German).

[Mon96] E. Monfroy. Solver Collaboration for Constraint Logic Programming. PhD
thesis, Centre de Recherche en Informatique de Nancy. INRIA-Lorraine, 1996.

[Rue95] M. Rueher. An Architecture for Cooperating Constraint Solvers on Reals. In
A. Podelski, editor, Constraint Programming: Basics and Trends., volume 910
of LNCS. Springer-Verlag, 1995.

